AFM探针的操作模式

随着AFM技术的发展,各种新应用不断涌现。具体包括如下技术:(1) 接触模式 (contact mode) 最早的模式,探针和样品直接接触,探针容易磨损,因此要求探针较软,即悬臂的弹性系数小,一般小于1N/m。(2) 轻敲模式 (tapping mode) 也叫Dynamic Force或者Intermittant-contact。探针在外力驱动下共振,探针部分振动位置进入力曲线的排斥区,因此探针间隙性的接触样品表面。探针要求很高的悬臂弹性系数来避免与样品表面的微层水膜咬死。Tapping mode对样品作用力小,对软样品特别有利于提高分辨率。同时探针的寿命也较contact mode的稍长。以上是最常用的AFM模式,别的模式还有很多:如Lateral Force Microscopy(横向力显微镜,检测样品表面微区对探针横向的摩擦力,可以获得材料的力学性能),Noncontact mode Force(非接触模式显微镜,与ta......阅读全文

AFM纳米碳管探针

纳米碳管探针    由于探针针尖的尖锐程度决定影像的分辨率,愈细的针尖相对可得到更高的分辨率,因此具有纳米尺寸碳管探针,是目前探针材料明日之星。纳米碳管(carbon nanotube)是由许多五碳环及六碳环所构成的空心圆柱体,因为纳米碳管具有优异的电性、弹性与轫度, 很适合作为原子力显微镜的探针针

AFM探针的操作模式

随着AFM技术的发展,各种新应用不断涌现。具体包括如下技术:(1) 接触模式 (contact mode) 最早的模式,探针和样品直接接触,探针容易磨损,因此要求探针较软,即悬臂的弹性系数小,一般小于1N/m。(2) 轻敲模式 (tapping mode) 也叫Dynamic Force或者Inte

AFM探针的操作模式

随着AFM技术的发展,各种新应用不断涌现。具体包括如下技术:(1) 接触模式 (contact mode) 最早的模式,探针和样品直接接触,探针容易磨损,因此要求探针较软,即悬臂的弹性系数小,一般小于1N/m。(2) 轻敲模式 (tapping mode) 也叫Dynamic Force或者Inte

AFM-的核心部件——探针

AFM 的核心部件——探针探针是AFM的核心部件, 它直接决定AFM的分辨率。目前AFM的探针多为硅的氧化物或氮化物, 而轻敲模式中的针尖一般为晶体硅。氮硅化合物的探针由悬臂和在悬臂末端的尖锐的针尖组成,悬臂的性质和尺度对决定AFM 的灵敏度和分辨率其重要的作用。在接触模式中,这种悬臂要很柔软,以便

如何激光检测原子力显微镜/AFM/AFM探针工作

二极管激光器发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检

AFM扫描和探针扫描各有什么不同?

AFM扫描式:因为其结构相对简单,所以也就更加稳定,其分辨率自然也就比针尖扫描式的更高一些。其缺点就是由于样品腔的限制,只能容纳一定尺寸的样品,另外样品扫描器负载的限制,不能扫描太重的样品,所以对于一些大样品也就无能为力了。样品扫描式的扫描器一般都可以更换,可以根据不同的需要选择不同的扫描器。针尖扫

探针是决定AFM灵敏度的核心

鉴于探针是决定AFM灵敏度的核心,为了能够更准确地反映出样品表面与针尖之间微弱的相互作用力的变化,得到更真实的样品表面形貌,提高AFM 的灵敏度,探针的设计经常在不断更新。但是由于探针的尖端不是无限尖而是有一定的宽度,因此在横向测量一个分子时,会出现所谓的“加宽效应”,即测量值大于真实值,为克服这种

AFM探针慢慢的接触到材料表面原理

原子力显微镜,用的就是类似原理,先用个10~20um宽度一条悬臂,底部做个尖状探针,探针尖儿在零点几个纳米当探针慢慢的接触到材料表面:距离几个纳米时,原子与探针产生吸引力;继续接近到零点几个纳米是就产生排斥力。这个排斥力,就像咱们拿竹竿往下戳,突然戳不动了,那是竹竿探到石头,产生了斥力

原子力显微镜(AFM)探针技术简介和展望

一.  原子力显微镜(AFM)简介二.  AFM探针分类三.AFM探针生产、销售资讯四.展望 一.  原子力显微镜(AFM)简介      原子力显微镜(atomic force microscope, AFM)是一种具有原子分辨率的表面形貌、电磁性能分析的重要仪器。1981年,STM(scan

哈工大甘阳教授研制纳米刷子可清除AFM探针污染物

  5月7日,美国材料研究学会(MRS)官方网站的“材料研究当前新闻”(Current research news of Materials News)栏目,以“光栅刷子能清洁原子力显微镜的探针针尖”为题,报道了哈尔滨工业大学化工学院教授发表在Ultramicroscopy上的原创性

AFM探针制备石墨烯纳米气泡及其三轴对称的赝磁场

  7月16日,中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室于Nature Communications在线发表了题为“程序化制备石墨烯纳米气泡及其三轴对称的赝磁场”的论文(Nature Communications, 10, 3127 (2019))。该研究提出了一种利用原子力显

哈工大专家发现高效去除AFM探针表面污染物新方法

  美国材料研究学会(MRS)官方网站日前在“材料研究当前新闻”栏目中,以《光栅刷子能清洁原子力显微镜的探针针尖》为题,报道了哈尔滨工业大学化工学院催化科学与工程系教授甘阳与墨尔本大学教授弗兰克斯合作发表在国际学术期刊《超显微术》(Ultramicroscopy)上的原创性研究成果。

扫描探针显微镜AFM/MFM-/STM-/SNOM/-NSOM数据可视化分析软件

       Gwyddion是用于SPM(扫描探针显微镜)数据可视化和分析的模块化程序。主要用于分析通过扫描探针显微镜技术(AFM,MFM,STM,SNOM / NSOM)获得的高度场,并且它支持 许多SPM数据格式。然而,它可以用于一般高度场和(灰度)图像处理,例如用于分析轮廓测量数据或来自成像

AFM应用实例

应用实例   1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征  原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而

AFM简谈

原子力显微镜(AFM)虽然名字里有“显微镜”三个字,但它并不像光学显微镜和电子显微镜那样能“看”微观下的物体,而是通过一根小小的探针来间接地感知物体表面的结构,得到样品表面的三维形貌图象,并可对三维形貌图象进行粗糙度计算、厚AFM主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品

什么是AFM

明。AFM 是一種類似於STM 的顯微技術,它的許多元件和STM是共同的,如用於三 維掃描的電壓陶瓷系統以及反饋控制器等。它和STM 最大的不同是用一個對微弱作用 力極其敏感的微懸臂針尖代替了STM 的隧道針尖,並以探測原子間的微小作用力(Van der Walls’ Force)代替了STM 的微

什么是AFM

明。AFM 是一種類似於STM 的顯微技術,它的許多元件和STM是共同的,如用於三 維掃描的電壓陶瓷系統以及反饋控制器等。它和STM 最大的不同是用一個對微弱作用 力極其敏感的微懸臂針尖代替了STM 的隧道針尖,並以探測原子間的微小作用力(Van der Walls’ Force)代替了STM 的微

AFM热学测量

热学测量目前,微纳米尺度下的热物性研究受到了极大的挑战:一方面,许多热物性的基础概念性问题不清楚,如微观尺度下非平衡态的温度如何定义等;另一方面,传统测试系统由于自身精度限制,很多热物性参数都无法直接测量,因此,无论是微纳尺度下热传导等的理论机制研究,还是微纳电子学和能源器件中的热传导、热耗散、热转

AFM的介绍

AFM全称Atomic Force Microscope,即原子力显微镜,它是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现

AFM检测技术

      原子力显微镜(Atomic Forcc Microscopc,AFM),也称扫描力显微镜(scanning FOrccMicroscopc,sFM),是一种纳米级高分辨的扫描探针显微镜,优于光学衍射极限1000倍。 ADM811原子力显微镜是由IBM公司苏黎世研究中心的格尔德・宾宁与斯福

AFM形态结构

形态结构  作为新兴的形态结构成像技术,AFM实现了对接近自然生理条件下生物样品的观察。这主要由于它具备以下几个特点:  1).与扫描电镜和透射电镜这些高分辨的观测技术相比,样品制备过程简便,可以不需染色、包埋、电镀、电子束的照射等处理过程;  2).除对大气中干燥固定后样品的观察外,还能对液体中样

快速AFM-技术

快速AFM 技术通常的AFM扫描速度较慢,不能满足许多动态现象的研究需求,快速AFM 技术(high speed AFM,HS-AFM)的核心限制因素是微悬臂探针的自然带宽,其在真空、大气及液体环境下分别是几赫兹,几千赫兹和几万赫兹。因此,在液体环境下更容易实现HS-AFM,但还需要具有高带宽(兆赫

AFM电学测量

电学测量如果微悬臂是用导电材料制成或外层镀有导电金属层,则探针可作为一个移动电极来施加电压和探测电流,从而来研究材料的微区电学性质,该技术通常称为导电原子力显微术(conductive-AFM,C-AFM)。利用导电原子力显微术可以探测样品的表面电荷、表面电势、表面电阻、微区导电性、微区介电特性、非

AFM应用实例

应用实例1.应用于纸张质量检验。 2.应用于陶瓷膜表面形貌分析。 3.评定材料纳米尺度表面形貌特征陶瓷膜表面形貌的三维图象

AFM位置检测

位置检测部分主要是由激光和激光检测系统组成。而反馈系统中主要包含一系列的压电陶瓷管。压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。即可以通过改变电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,

AFM力学测量

力学测量在纳米材料和器件的诸多性质中,力学性质不仅面广而且也是评价纳米材料和器件的主要指标,是纳米材料和器件得以真正应用的关键。目前关于AFM的微纳米力学研究,已在纳米材料力学性质、纳米摩擦等领域取得了较大进展。在AFM接触模式下,研究样品材料微纳尺度内的形貌和力学性质(包括杨氏模量、硬度、粘弹性、

AFM曲线测量

曲线测量SFM除了形貌测量之外,还能测量力对探针-Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。当微悬臂固定端被垂直接近,然后离开样品表面时,微悬臂和样品间产生了相对移动。而在这个过程中微悬臂自由端的探针也在接近、甚至压入样品表面,然后脱离,此时原子力显微镜/AFM测量并记录了探