亩产264.8公斤我国科学家在黄三角盐碱地里育出高产大豆

在含盐量可达千分之五,被视为“不毛之地”的盐碱地里种大豆,不仅仅能长得好,还能高产,这是刚刚在黄河三角洲中国科学院遗传与发育生物学研究所(以下简称中科院遗传发育所)东营分子设计育种研究中心基地里发生的事情。 10月11日,由中科院遗传发育所邀请专家对中科院重点部署项目“大豆高产稳产分子基础与品种培育”进行测产,结果显示:在黄河三角洲地区土壤含盐量为千分之五的盐碱地里,种植的耐盐大豆材料TZX-1736、TZX-805亩产可达264.8公斤、263.3公斤,这创造了耐盐碱大豆新品种的亩产纪录。相对之下,该数据已经超越了2020年我国大豆平均亩产(132.4公斤)。 以中科院院士领衔的专家组一致认为,这两个大豆品系具有耐盐高产特性,是大豆耐盐碱的重要创新性成果。 据了解,我国是世界上最大的大豆消费国,其中80%以上依赖进口,2020年进口总量高达一亿多吨。据该品系的育成者、中科院遗传发育所研究员田志喜向科技日报记者强调:当......阅读全文

遗传发育所激素调控水稻冠根发育研究获进展

  细胞分裂素是植物中五大激素之一,在植物的生长发育中起着非常重要的作用。2005年日本科学家首先发现了许多高产水稻品种中一个编码细胞分裂素氧化酶/脱氢酶基因OsCKX2的突变,造成细胞分裂素在花序分生组织中的特异性累积,导致大穗的表型,最终导致水稻产量的大幅度提高。  根是植物吸收水分和营养物质的

遗传发育所鉴定出小麦穗发育的转录调控因子

  小麦是重要的粮食作物之一。小麦的产量主要由亩穗数、千粒重和穗粒数决定。穗型结构影响小麦的小穗数、穗粒数和产量,是育种改良地重要的选择性状。挖掘小麦穗发育重要调控因子与解析分子调控机制,对小麦穗型的分子设计与精准改良、突破产量瓶颈具有重要意义。由于小麦功能基因组学发展较晚,穗发育关键基因挖掘及作用

大豆进化与驯化表观遗传调控规律获揭示

原文地址:http://news.sciencenet.cn/htmlnews/2021/3/454973.shtm 近日,南京农业大学多倍体团队在《植物细胞》上发表研究论文。该研究整合三维基因组、染色质可及性、组蛋白修饰、DNA甲基化和转录组,深入解析了在大豆多倍化、二倍化与人工驯化过程中,三

田志喜:给中国大豆“嵌入”高产基因

  走进中国科学院遗传与发育生物学研究所(以下简称遗传发育所)研究员田志喜的实验室,最先入耳的是一阵阵“哗啦”声——一群学生正扬起刚收获不久的大豆。金黄的豆粒在柳条编织的簸箕中上下翻飞,与农家的丰收景象别无二致。而在走廊另一侧,现代化的科研仪器正在井然有序地运行,古老的农作物,在这里被赋予了新的价值

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所拟南芥根木质部发育机制研究获进展

  真核生物转录起始因子eIF5A是一类在真核生物中高度保守的基因家族,调控真核生物生长发育的多个生物学过程。   中科院遗传与发育生物研究所左建儒研究组最近的研究发现,拟南芥eIF5A-2/FBR12通过细胞分裂素信号通路调控拟南芥根木质部的发育。 eIF5A-2/FBR1通过与细胞分裂素受

遗传与发育所在出生后脑发育机制研究中获进展

  出生后神经细胞分化成熟对脑发育至关重要,许多脑疾病与出生后脑发育缺陷有关。然而,出生后神经细胞分化成熟的机制仍然不清楚。   中科院遗传与发育生物学研究所研究员李晓江研究组最近发现,亨廷顿疾病蛋白的结合蛋白HAP1与出生后神经细胞分化成熟密切相关。HAP1主要表达在神经细胞中。利用基因敲除小鼠

大豆对孢囊线虫超亲遗传抗性研究中获进展

  大豆孢囊线虫病是制约大豆生产的全球性病害之一。大豆孢囊线虫的抗性由多基因和数量性状控制。大多数研究是基于高抗和高感品种杂交形成的遗传分离群体,存在高抗基因时,微效基因时常被掩盖而不能被有效检测,但后代对线虫的表型反应相对于亲本显现为广泛的变异。此外,当前对大豆孢囊线虫的抗性评价是建立在每株孢囊数

科学家揭示大豆生态适应性遗传机制

  大豆是世界上重要的经济粮食作物,起源于我国黄淮海地区,是典型的短日照作物。通常,当高纬度地区大豆品种引种到低纬度区域时,由于其对光周期极其敏感,成熟期大大提前,导致大豆植株生物量和产量降低,这极大程度限制了低纬度地区的大豆种植。大豆长童期 (Long Juvenile, LJ) 性状在上世纪70

遗传发育所揭示叶片非对称发育的生物力学调控

在发育过程中,动植物的器官如何获得不对称的形状?大量的分子遗传学研究发现了诸多调控基因,但仍未完全解答基本的发育生物学问题:人们尚不了解基因如何指导器官形状的建立。叶片作为典型的植物器官,是研究器官不对称性产生的很好体系。  中国科学院遗传与发育生物学研究所焦雨铃研究组与中科院力学研究所龙勉研究组,

遗传发育所脑肿瘤抑制因子调控突触发育研究获进展

  神经突触是神经元与其靶细胞之间进行信息交流的特化结构。突触生长过程的精确调控对于神经环路的形成和可塑性至关重要,突触发育和功能的异常导致多种神经精神疾病包括智力低下、自闭症、精神分裂症和神经变性病等。因此,寻找和鉴定突触发育和功能调控基因一直是神经生物学家的重要研究内容之一。   果蝇脑肿瘤基

遗传发育所发现调控拟南芥分枝和种子角果发育的转录因子

  Dof转录因子家族是一类植物特有的转录因子家族,它们参与调控了多种生长发育过程。在以前的研究中发现,大豆GmDOF4和GmDOF11可提高种子的脂肪酸含量并增加种子千粒重。本研究筛选了在拟南芥种子/花中高表达的Dof转录因子AtDOF4.2并进一步研究其功能。   AtDOF4.

遗传发育所神经系统早期发育研究取得新进展

  Joubert综合征(Joubert syndrome, JBTS)是一种十分少见的常染色体隐性遗传神经系统发育迟滞疾病。主要是小脑蚓部发育不良加上其他异常,常见症状是发作性气喘,在新生儿期出现发作性呼吸急促或呼吸暂停。眼球常有急促运动,智力发育迟钝,由于小脑蚓部发育不良而致共济失调和平衡障

科学家破解大豆发育“基因密码”助力精准分子育种

大豆是人类与家畜植物性蛋白质和油的重要来源。目前,利用分子设计育种策略加速大豆育种颇为重要,而揭示关键基因和大豆器官发育的调控网络则对分子设计育种至关重要。中国科学院遗传与发育生物学研究所田志喜研究团队与合作者,开创性地构建了宏观-单细胞-空间三级转录解析体系。研究基于314份全器官样本的Bulk

树木发育遗传调控研究跨入“分子时代”

  日前,北京林业大学教授林金星主持的“树木发育遗传调控与抗逆分子机制”通过教育部专家组验收。这支教育部创新团队以我国重要造林树种为材料,开展了具有国际前沿性的原始创新研究,在树木生物学领域取得了突破性进展。  传统的研究主要依据植物个体的外在指标和数据进行。但林金星团队以树木发育遗传调控和抗逆分子

遗传发育所PlantCell解密未知功能与机理

  来自中科院遗传与发育生物学研究所的研究人员发表了题为“The Arabidopsis Mediator Subunit MED25 Differentially Regulates Jasmonate and Abscisic Acid Signaling through Interac

遗传发育所曹晓风团队开辟水稻表观遗传研究新方向

  DNA测序技术发明之后,科学家们认为自己可以通过DNA全基因组测序解析生命的全部密码。渐渐的,他们发现有些重要信息并不编码于DNA序列里面,即便基因序列没有发生变化,生物体的表型也可以改变。这种研究被称为“表观遗传学”,继传统遗传学之后,表观遗传学如火如荼地发展起来了。曹晓风供图  中科院院士、

遗传发育所阐明脊髓发育早期微环境对神经再生的作用

人体组织细胞处在独特的微环境中,这个微环境由细胞外基质、各种细胞、可溶性信号分子等共同组成。微环境在细胞信号传导、增殖和分化、形态和迁移、免疫应答以及营养代谢等方面发挥重要作用。深入研究细胞微环境对于了解生命奥秘和疾病治疗具有重要意义。脊髓损伤对于成年哺乳动物来说是一种毁灭性打击,由于成体脊髓组织存

遗传发育所在植物着丝粒表观遗传学研究中取得进展

  植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中科院遗传与发育生物学研究所韩方普实验室长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制。   由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序列暂不能直接用于植物人

遗传发育所揭示植物雌雄识别的分子机制

  受精需要精子和卵细胞的结合,而精子能否被及时地传递到卵子是受精的关键。在被子植物中,精子是通过花粉管来传递的,但花粉管是如何将精子传递到卵子的呢?这是植物生殖生物学几十年来关注的主要问题,也是杂交育种的技术瓶颈之一。日前,中国科学院遗传与发育生物学研究所杨维才研究组首次分离到了花粉管识别雌性吸引

遗传发育所在植物先天免疫研究中取得进展

  病原细菌在侵染植物时需要分泌一系列效应蛋白到宿主细胞内,通过作用于特定靶点,改变植物的生理活动,以利于细菌的入侵或定殖。研究效应蛋白的作用机理不仅使我们认识病原细菌如何完成致病这一复杂生物学过程,还能帮助我们认识植物生物学本身的内在机制。  中国科学院遗传与发育生物学研究所周俭民研究组的研究发现

遗传发育所玉米新品种培育取得进展

  经吉林省农作物品种审定委员会研究,中国科学院遗传与发育生物学研究所陈化榜研究组选育的玉米杂交新组合“H7 x Y4”已通过吉林省农作物品种审定,并正式定名为“科育186”(编号为吉审玉2014016)。   “科育186”抗倒伏、耐密植、丰产性好,脱水快、容重高、品质优、抗病性较强。该品种

遗传发育所在冬季土壤呼吸研究中取得进展

  土壤呼吸是全球陆地生态系统碳循环的一个重要组成部分,其动态变化对全球碳循环有着深远的影响。大多研究仅考虑植被生长季的土壤呼吸,而忽视了冬季土壤呼吸。由于中纬度地区的陆地生态系统是北半球的重要碳库,发挥着巨大的碳汇功能,因而研究该区域不同植被类型的冬季土壤呼吸对区域和全球碳循环具有重要意义。  

遗传发育所在同源重组机制研究中取得进展

  减数分裂是维持生物体染色体数恒定,导致遗传重组产生的基础。减数分裂缺陷是导致不孕、不育和出生障碍的主要原因。绝大多数减数分裂基因在不同物种中有着高度保守的功能。HEI10基因最初在人类体细胞中分离,并证明有调控细胞周期的功能。在小鼠中的研究表明,HEI10基因的突变会导致减数分裂异常并最终导致不

遗传发育所在脊髓损伤修复研究中取得进展

  脊髓损伤修复一直是困扰医学界的一大难题,目前仍无有效的治疗方法。脊髓损伤后,内部微环境存在很多限制和阻碍神经再生的因素,如何营造一个良好的再生环境来正确引导残存神经元的正确延伸是一个重要的治疗策略。  中国科学院遗传与发育生物学研究所戴建武课题组一直秉承科研为现实需求服务的理念,以具体的临床需求

遗传发育所开发出植物基因驱动工具

面对杂草对农业生产带来的威胁以及入侵植物导致的环境危机等挑战,对野生植物进行群体水平上的基因控制已成为具有潜力的策略。然而,植物基因组存在着一类自私的基因或遗传元件,使其以超越孟德尔定律的比例传递给后代,被称为基因驱动元件。受天然基因驱动元件的启发,开发人工基因驱动工具为改造野生植物群体提供了潜在的

遗传发育所外周神经损伤研究获进展

  周围神经损伤的修复和重建一直是临床难题之一,特别是对于大于3cm的外周神经缺损,自体神经移植术被认为是首选治疗方法,然而自体神经移植在目前临床治疗中存在供体缺乏、需要多次手术等问题。  中国科学院遗传与发育生物学研究所戴建武研究组建立了3.5cm缺损的猪面神经损伤模型,通过电生理学检测、形态学观

遗传发育所水稻叶片衰老机制研究取得进展

  叶片是植物主要的光合器官,是植物生长能量和有机物质的主要来源地。以水稻为例,籽粒灌浆所需营养物质的60%~80%来自叶片光合作用。因此,叶片的功能直接影响作物的最终产量和品质。研究表明,成熟期水稻功能叶片每延迟1天衰老,可增产1%左右。因此,研究叶片细胞死亡的分子机制具有重要的理论和实践意义。