原子吸收光谱分析测定条件分析
1、分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。2、狭缝宽度选择 狭缝宽度影响光谱通带宽度与检测器接受的能量。原子吸收光谱分析中,光谱重叠干扰的几率小,可以允许使用较宽的狭缝。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其它的谱线或非吸收光进入光谱通带内,吸光度将立即减小。不引起吸光度减小的最大狭缝宽度,即为应选取的合适的狭缝宽度。3、空心阴极灯的工作电流选择 空心阴极灯一般需要预热10-30min才能达到稳定输出。灯电流过小,放电不稳定,故光谱输出不稳定,且光谱输出强度小;灯电流过大,发射谱线变宽,导致灵敏度下降,校正曲线弯曲,灯寿命缩短。选用灯电流的一般原则是,在保证有足够强且稳定的光强输出条件下,尽量使用较低的工作电流......阅读全文
原子吸收光谱分析测定条件分析
1、分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。2、狭缝宽度选择 狭缝宽度影响光谱通带宽度与检测器接受
原子吸收光谱分析测定条件科普
1、分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。2、狭缝宽度选择 狭缝宽度影响光谱通带宽度与检测器接受
原子吸收光谱分析测定条件介绍
1,分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。2,狭缝宽度选择 狭缝宽度影响光谱通带宽度与检测器接受
原子吸收光谱分析测定条件的选择
原子吸收光谱分析测定条件的选择 1、分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。 2、狭缝宽度选
原子吸收光谱分析测定条件的选择
01 分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。 02 狭缝宽度选择 狭缝宽度影响光谱通带
原子吸收光谱分析测定条件的选择
通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。 2、狭缝宽度选择 狭缝宽度影响光谱通带宽度与检测器接受的能量。
【仪器】原子吸收光谱分析测定条件的选择
通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。狭缝宽度影响光谱通带宽度与检测器接受的能量。原子吸收光谱分析中,光谱重叠干
【仪器】原子吸收光谱分析测定条件的选择
01 分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。 022 狭缝宽度选择 狭缝宽度影响光谱通
实验室原子吸收光谱分析步骤原子吸收光谱测定的条件
一、分析线的选择一般选用灵敏线或干扰小的谱线。含量较高,可选择次灵敏线,如Cu 327.4nm、Na 589.5nm、K766.9nm、Pb一般不用217.0nm线因它与Sb 217.6nm线可能重叠,选分析线必须避免谱线重叠,如Fe 248.3nm线与Pt 247.6n线可能重叠,Au 242.8
【仪器】仪器分析之原子吸收光谱分析测定条件的选择
1.分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。 2.狭缝宽度选择 狭缝宽度影响光谱通带宽度与检
原子吸收光谱分析法测定条件有哪几种
1,分析线选择 通常选用共振吸收线为分析线,测定高含量元素时,可以选用灵敏度较低的非共振吸收线为分析线。As、Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其有明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。2,狭缝宽度选择 狭缝宽度影响光谱通带宽度与检测器接受
怎样选择原子吸收光谱分析的最佳条件
转载:《分析测试百科网》火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法)实验目的1、了解原子吸收光谱仪的原理和构造2、掌握优选测定条件的基本方法3、掌握标准曲线法实验原理原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的。与原子发射光谱相反,元素的基态原
怎样选择原子吸收光谱分析的最佳条件
火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法)实验目的1、了解原子吸收光谱仪的原理和构造2、掌握优选测定条件的基本方法3、掌握标准曲线法实验原理原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的.与原子发射光谱相反,元素的基态原子可以吸收与其发射线波长
原子吸收光谱分析如何选择最佳实验条件
原子吸收光谱分析中影响测量条件的可变因素多,在测量同种样品的各种测量条件不同时,对测定结果的准确度和灵敏度影响很大。选择最适的工作条件,能有效地消除干扰因素,可得到最好的测量结果和灵敏度。测量条件的选择 1、吸收波长(分析线)的选择: 通常选用共振吸收线为分析线,测量高含量元素时,可选用灵敏度较低的
原子吸收光谱分析如何选择最佳实验条件
原子吸收光谱分析中影响测量条件的可变因素多,在测量同种样品的各种测量条件不同时,对测定结果的准确度和灵敏度影响很大。选择最适的工作条件,能有效地消除干扰因素,可得到最好的测量结果和灵敏度。 测量条件的选择 1、吸收波长(分析线)的选择: 通常选用共振吸收线为分析线,测量高含量元
怎样选择原子吸收光谱分析的最佳条件
转载:《分析测试百科网》火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法)实验目的1、了解原子吸收光谱仪的原理和构造2、掌握优选测定条件的基本方法3、掌握标准曲线法实验原理原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的。与原子发射光谱相反,元素的基态原
原子吸收光谱分析最佳实验条件的选择
1、吸收波长(分析线)的选择: 通常选用共振吸收线为分析线,测量高含量元素时,可选用灵敏度较低的非共振线为分析线。如测Zn时常选用最灵敏的213.9nm波长,但当Zn的含量高时,为保证工作曲线的线性范围,可改用次灵敏线307.5nm波长进行测量。As,Se等共振吸收线位于200nm以下的远紫外区,火
原子吸收光谱分析中如何选择最佳实验条件?
原子吸收光谱分析中影响测量条件的可变因素多,在测量同种样品的各种测量条件不同时,对测定结果的准确度和灵敏度影响很大。选择最适的工作条件,能有效地消除干扰因素,可得到最好的测量结果和灵敏度。 最佳实验条件选择 1.吸收波长(分析线)的选择 通常选用共振吸收线为分析线,测量高
原子吸收光谱分析的光源应当符合哪些条件
原子吸收光谱分析的光源应当符合的条件:谱线宽度窄(锐线),有利于提高灵敏度和工作曲线的直线性。谱线强度大、背景小,有利于提高信噪比,改善检出限。稳定,有利于提高测量精密度。灯的寿命长。一、组成原子吸收光谱的五个部分:1、光源。光源的功能是发射被测元素的特征共振辐射。对光源的基本要求是:发射的共振辐射
原子吸收的测定条件选择
测定条件该如何选择 1、分析线的选择: 最适宜的分析线,应视具体情况由实验确定。 实验方法:首先扫描空心阴极灯的发射光谱,了解有哪几条可供选择的谱线,然后喷入试液,根据吸收情况,选择不受干扰而且吸光度值适度的谱线作为分析线。 2、狭缝宽度的选择: 合适的狭缝宽度同样
原子吸收的测定条件选择
测定条件该如何选择1、分析线的选择:最适宜的分析线,应视具体情况由实验确定。实验方法:首先扫描空心阴极灯的发射光谱,了解有哪几条可供选择的谱线,然后喷入试液,根据吸收情况,选择不受干扰而且吸光度值适度的谱线作为分析线。2、狭缝宽度的选择:合适的狭缝宽度同样应通过实验确定,即将试液喷入火焰中,调节狭缝
原子吸收光谱分析
概述: 原子吸收光谱法是根据蒸气相中待测元素的基态原子对其共振辐射的吸收进行定量分析的方法。1、原子吸收光谱法的优点(1)、检出限低、灵敏度高(2)、精密度高、分析速度快(3)、选择性好,光谱干扰少:原子吸收谱线少,一般没有共存元素的光谱重叠。(4)、应用范围广:可测定元素达70多种,不仅可以测定金
原子吸收光谱分析
概述: 原子吸收光谱法是根据蒸气相中待测元素的基态原子对其共振辐射的吸收进行定量分析的方法。1、原子吸收光谱法的优点(1)、检出限低、灵敏度高(2)、精密度高、分析速度快(3)、选择性好,光谱干扰少:原子吸收谱线少,一般没有共存元素的光谱重叠。(4)、应用范围广:可测定元素达70多种,不仅可以测定金
火焰原子吸收光谱分析如何选择最佳的实验条件
火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法)实验目的1、了解原子吸收光谱仪的原理和构造2、掌握优选测定条件的基本方法3、掌握标准曲线法实验原理原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的。与原子发射光谱相反,元素的基态原子可以吸收与其发射线波长
原子吸收光谱分析简介
概述原子吸收光谱分析(Atomic Absorption Spectrometry, AAS)又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元
火焰原子吸收分析最佳条件选择
一、吸收线的选择在原子吸收分析中,为获得稳定的灵敏度,稳定度和稳定的线形范围及无干扰测定,须选择合适的吸收线。选择合适吸收线应根据分析目的,待测元素浓度,试样性质组成,干扰情况,仪器波长范围以及光电倍增管光谱特性等加以综合考虑和具体分析。1.灵敏度原子吸收分析通常用于微量元素分析。因此,一般选择最灵
如何选择火焰原子吸收最佳测定条件
原子化器的功能是提供能量,使试样干燥、蒸发和原子化。入射光束在这里被基态原子吸收,因此也可把它视为“吸收池”。对原子化器的基本要求:必须具有足够高的原子化效率;必须具有良好的稳定性和重现形;操作简单及低的干扰水平等。
如何选择火焰原子吸收最佳测定条件
火焰原子吸收法最佳条件的选择和自来水中钠的测定(工作曲线法) 实验目的 1、了解原子吸收光谱仪的原理和构造 2、掌握优选测定条件的基本方法 3、掌握标准曲线法 实验原理 原子吸收分光光度分析法是根据物质产生的原子蒸气对特定波长的光吸收作用来进行定量分析的。 与原子发射光谱相反,元素
原子吸收光谱分析的特点
原子吸收光谱分析能在短短的三十多年中迅速成为分析实验室的有力武器,由于它具有许多分析方法无可比拟的优点。 ⑴ 灵敏度高 采用火焰原子化方式,大多元素的灵敏度可达ppm级,少数元素可达ppb级,若用高温石墨炉原子化,其绝对灵敏度可达10-10-10-14g,因此,原子吸收光谱法极适用于痕量金属分析。
原子吸收安装条件
原子吸收安装条件1.实验室环境条件:用于安装仪器的实验室应具备良好的外部环境。实验室应设置在附近无强电磁场和强热辐射源的地方, 不宜建在会产生剧烈震动的设备和车间附近,应避免日光直射、烟尘、污浊气流及水蒸气的影响。原子吸收实验室必须和化学处理室及发射光谱实验室分开, 以防酸气侵蚀和强磁场干扰。实验室