原子发射光谱仪的误差来源探讨

根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差及其他误差等。 1.系统误差的来源 (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。 (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。 (3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所差别。 (4)未知元素谱线的重叠干扰。如熔炼过程中加入脱氧剂、除硫磷剂时,混入未知合金元素而引入系统误差 (5)要消除系统误差,必须严格按照标准样品制备规定要求。为了检查系统误差,就需要采用化学分析方分析多次校对结果。 2.偶然误差的来源 与样品成分不均匀有关的误差。因为光电光谱分析所消耗的样品很少,样品中元素分布的不均匀性、组织结构的不均匀性,导致不同部位的分析结果不同而产生。 3.其他因素误差及如......阅读全文

原子发射光谱仪的误差来源探讨

根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差及其他误差等。    1.系统误差的来源    (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。    (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。  

原子发射光谱仪性能探讨

在光谱分析仪测定过程中,精密度是重要指标之一,与光谱仪本身、方法设置、分析测试人员水平有关系,没有高精密度的方法,就无法保证数据的准确性。操作者在工作中会经常碰到测试数据波动大,常量分析ESD%大于2%等故障现象。这种现象就是数据精密度差的表现,也就是专业上所说的信号噪声大。上面阐述了等离子炬形成的

原子发射光谱仪的误差种类及原因分析

根据误差的性质及产生原因,误差可分为系统误差、偶然误差、过失误差及其他误差等。    1.系统误差的来源    (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。    (2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。  

直读光谱仪误差来源

直读光谱仪误差来源有: 1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。  2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所

直读光谱仪的误差来源

  光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时, 所得结果与真实含量通常不一致,存在一定误差,并且受诸多因素的影响,有的材料本身含量就很低。下面就误差的种类、来源及如何避免误差进行分析。根据误差的性质及产生原因, 误差可分为系统误差、偶然误差、过失误差及其他误差等。  1.系统误差

光电直读光谱仪的误差来源

  光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受诸多因素的影响,有的材料本身含量就很低。下面就误差的种类来源,那么根据误差的性质及产生原因,误差可分为下面几种:   1、系统误差的来源   (1)标样和试样中的含量和化学组成不完

直读光谱仪器的误差来源有哪些?

  1、直读光谱仪器的误差来源有哪些?  1)系统误差也叫可测误差,一般包括仪器的本身波动;样品的给定值和实际值存在一定的偏差(标准样品的元素定值方法可能和实际检测方法不一致,这样检测结果会有方法上的差异;同一种方法的检测结果也存在一定的波动);待测样品和系列标样之间存在成分的差异,可能导致在蒸发、

原子发射光谱仪的构造

原子发射光谱仪工作时,由于激发光源的能量高,在200~1000nm波长范围会产生10万~1000万条谱线,平均在0. lmm宽度就分布上百条谱线,因而几乎每个元素的分析线都会受到不同程度的谱线干扰。当使用ICP光谱仪时,比其它光源会出现更强的谱线重叠干扰,而成为ICP-AES中的主要干扰。原子发射光

原子发射光谱仪的构成

原子发射光谱仪,是将成分复杂的光分解为光谱线的科学仪器。它密封在一个温度稳定的恒温机箱里,设计小巧,操作简易,设备的搬运和操作只要一个人就能完成。这一类仪器一般包括:光源、单色器、检测器和独处器件。原子发射光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别

ICP原子发射光谱仪原子化的方法

ICP原子发射光谱仪原子化的方法:原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。

ICP原子发射光谱仪原子化的过程

  ICP原子发射光谱仪原子化的过程   原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。   火焰原子化   在这过程中,大致分为两个主要阶段:   (1)从溶液雾化至蒸发为分子蒸气的过程。主要依赖于雾化器的性能、雾滴大小、溶液性质、火焰温度和溶液的浓度等。   (2

X荧光光谱仪分析中的误差来源

X射线荧光光谱仪是通过X射线管产生的X射线作为激光源,激发光源激发样品产生X荧光射线。根据荧光X射线的波长和强度来确定样品的化学组成。作为一种质量检测手段,X荧光光谱仪在我国各行各业应用越来越广泛。研究X荧光光谱仪在分析过程中的误差,提高仪器的分析准确度成为重要的课题。 X射线荧光分析过程中产生误差

X射线荧光光谱仪分析误差的来源

X射线荧光仪器分析误差的来源主要有以下几个方面:1. 采样误差:非均质材料样品的代表性2. 样品的制备:制样技术的稳定性产生均匀样品的技术3. 不适当的标样:待测样品是否在标样的组成范围内标样元素测定值的准确度标样与样品的稳定性4. 仪器误差:计数的统计误差样品的位置灵敏度和漂移重现性5. 不适当的

原子吸收光谱仪的维护技巧探讨

  . 每次关机及分析结束当做好以下工作:放干净空压机贮气灌内的冷凝水、检查燃气是否关好;用水彻底冲洗排废系统;如果用了有机溶剂,则要倒干净废液罐中的废液,并用自来水冲洗废液罐;高含量样品做完,应取下燃烧头放在自来水下冲洗干净并用滤纸仔细把缝口积碳檫除然后摔掉水滴晾干以备下次再用。同时继续用纯水喷雾

原子吸收光谱仪的维护技巧探讨

原子吸收光谱仪是一种常用的分析仪器,可测定多种元素,具有性能稳定、使用灵活、可靠性高、维护简便等优点。原子吸收光谱仪使用中会产生一定的故障问题,今天我们就来具体介绍一下原子吸收光谱仪的维护技巧,希望可以帮助到大家。几点维护技巧:1. 每次关机及分析结束当做好以下工作:放干净空压机贮气灌内的冷凝水、检

原子吸收光谱仪的维护技巧探讨

原子吸收光谱仪是一种常用的分析仪器,可测定多种元素,具有性能稳定、使用灵活、可靠性高、维护简便等优点。原子吸收光谱仪使用中会产生一定的故障问题,今天我们就来具体介绍一下原子吸收光谱仪的维护技巧,希望可以帮助到大家。原子吸收光谱仪的几点维护技巧:1 每次关机及分析结束当做好以下工作:放干净空压机贮气灌

原子吸收光谱仪的维护技巧探讨

原子吸收光谱仪是一种常用的分析仪器,可测定多种元素,具有性能稳定、使用灵活、可靠性高、维护简便等优点。原子吸收光谱仪使用中会产生一定的故障问题,今天我们就来具体介绍一下原子吸收光谱仪的维护技巧,希望可以帮助到大家。原子吸收光谱仪的几点维护技巧:1 每次关机及分析结束当做好以下工作:放干净空压机贮气灌

原子发射光谱仪的工作原理

原子发射光谱仪是根据试样中被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射波长及其强度的大小,对各元素进行定性分析和定量分析的仪器。

原子发射光谱仪的工作原理

等离子发射光谱仪是由高频发生装置(几十兆赫兹)、单色器、光电接收装置、数据处理系统等组成。工作原理:高频发生装置输出的电感耦合管状体里(高温体)注入样品、氩气、氮气等混合气体(一定比例)。使样品原子化显现光谱,用单色器等光学器件来处理光谱,再由光电接收装置测量它的光谱强度,然后计算机等数据处理系统,

原子发射光谱仪的工作原理

原子吸收光谱仪基本原理:仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测原素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测原素的含量。用 途:原子吸收光谱仪可测定多种元素,火焰原子吸收光谱法可测到10-9g/ml数量级,石墨炉原子吸收法可测到10-13g/ml数量级

传统的原子发射光谱仪器简介

  是采用衍射光栅,将不同波长的光色散并成像在各个出射狭缝上,光电倍增管(PMT)则安装于出射狭缝后面。为了使光谱仪能装上尽可能多的检测器,仪器的分光系统必须将谱线尽量分开,也就是说单色器的焦距要足够长,最初的达3.2m。即使采用高刻线光栅,也需0.5m至1.0m长的焦距,才有满意的分辨率和装上足够

原子发射光谱仪的工作原理

等离子发射光谱仪是由高频发生装置(几十兆赫兹)、单色器、光电接收装置、数据处理系统等组成。工作原理:高频发生装置输出的电感耦合管状体里(高温体)注入样品、氩气、氮气等混合气体(一定比例)。使样品原子化显现光谱,用单色器等光学器件来处理光谱,再由光电接收装置测量它的光谱强度,然后计算机等数据处理系统,

几种误差的来源

  1.过失误差  过失误差也称粗差。这类误差明显的歪曲测定结果,是由测定过程中犯了不应有的错误造成的。例如,标准溶液超过保存期,浓度或价态已经发生变化而仍在使用;器皿不清洁;不严格按照分析步骤或不准确地按分析方法进行操作;弄错试剂或吸管;试剂加入过量或不足;操作过程当中试样受到大量损失或污染;仪器

ICP原子发射光谱仪原理

原子发射光谱法指根据原子的特征发射光谱来研究物质的结构和测定物质的化学成分的方法称为原子发射光谱法。发射光谱通常用化学火焰,电火花,电弧,激光和各种等离子体光源激发而获得。目前zui广泛的原子发射光谱光源是等离子体。ICP原子发射光谱仪也称为电感耦合等离子体原子发射光谱仪(inductively c

ICP原子发射光谱仪器结构

电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、色散系统、检测系统等构成,并配有计算机控制及数据处理系统,冷却系统、气体控制系统等。

ICP原子发射光谱仪怎么实现原子化?

ICP原子发射光谱仪原子化的方法:原子吸收光谱法采用的原子化方法主要有火焰法、石墨炉法和氢化物发生法。

手持式光谱仪系统误差的来源分析

 手持式光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受诸多因素的影响,有的材料本身含量就很低。   手持式光谱仪系统误差的来源有:   (1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。   (2

ICP原子发射光谱仪的设计基础

ICP原子发射光谱仪是基于从光源辐射出待测元素的特征光波,通过样品的蒸汽时,被蒸汽中待测元素的基态原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。

简介原子发射光谱仪的结构原理

  原子发射光谱分析(Atomic Emission Spectrosmetry, AES),是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。  学习原子发射光谱仪之前的几个概念一定要知道:激发电位(Excited potential)、原子线、共振线(Resonan

ICP原子发射光谱仪参考参数

主要性能参数:1、 波长范围:180-800nm(2400光栅)180-500nm(3600光栅)2、 分辨率:在180-800nm  全波段内分辨率可达0.006nm3、 波长示值误差和重复性:波长示值误差≤0.02nm,    重复性≤0.003nm4、 扫描步距:0.0004nm5   精密度