PN结半导体探测器的工作原理
多数载流子扩散,空间电荷形成内电场并形成结区。结区内存在着势垒,结区又称为势垒区。势垒区内为耗尽层,无载流子存在,实现高电阻率,远高于本征电阻率 [4] 。 在P-N结上加反向电压,由于结区电阻率很高,电位差几乎都降在结区。 反向电压形成的电场与内电场方向一致。 在外加反向电压时的反向电流: 少子的扩散电流,结区面积不变,IS 不变; 结区体积加大,热运动产生电子空穴多,IG 增大; 反向电压产生漏电流 IL ,主要是表面漏电流。......阅读全文
PN结半导体探测器的工作原理
多数载流子扩散,空间电荷形成内电场并形成结区。结区内存在着势垒,结区又称为势垒区。势垒区内为耗尽层,无载流子存在,实现高电阻率,远高于本征电阻率 [4] 。 在P-N结上加反向电压,由于结区电阻率很高,电位差几乎都降在结区。 反向电压形成的电场与内电场方向一致。 在外加反向电压时的反向电流
PN结半导体探测器的类型
扩散结(Diffused Junction)型探测器 采用扩散工艺——高温扩散或离子注入 ;材料一般选用P型高阻硅,电阻率为1000;在电极引出时一定要保证为欧姆接触,以防止形成另外的结。 金硅面垒(Surface Barrier)探测器 一般用N型高阻硅,表面蒸金50~100μg/c
半导体探测器简介
半导体探测器是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似,故又称固体电离室。半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号。常用半导体探测器有 P-N结型半导体探测器、 锂漂
高纯锗(HPGe)半导体探测器的相关介绍
简介 随着锗半导体材料提纯技术的进展,已可直接用超纯锗材料制备辐射探测器。它具有工艺简单、制造周期短和可在室温下保存等优点。用超纯锗材料还便于制成X、γ射线探测器,既可做成很大灵敏体积,又有很薄的死层,可同时用来探测X和γ射线。高纯锗探测器发展很快,有逐渐取代锗。 工作原理 采用高纯度的
半导体探测器的基本原理和特点
基本原理 半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号 [2] 。 我们把气体探测器中的电子-离子对、闪烁探测器中被 PMT第一打拿极收集的电子 及半导体探测器中的电子-空穴对统称为探测器的信息载流子。产生每个信息载流
光电导效应在基础光电器件中的应用
(1)在探测器中的应用利用光电导效应原理工作的探测器称为光电导探测器。作为半导体材料的一种体效应,光电导效应无须形成p-n结。光照越强,光电导材料的电阻率越小,故光电导材料又称为光敏电阻。不含杂质的光敏电阻一般在室温下工作,适用于可见光和近红外辐射探测,含杂质的光敏电阻通常必须在低温条件下工作,常用
光电导效应在基础光电器件中的应用
在基础光电器件中的应用(1)在探测器中的应用利用光电导效应原理工作的探测器称为光电导探测器。作为半导体材料的一种体效应,光电导效应无须形成p-n结。光照越强,光电导材料的电阻率越小,故光电导材料又称为光敏电阻。不含杂质的光敏电阻一般在室温下工作,适用于可见光和近红外辐射探测,含杂质的光敏电阻通常必须
探测器的工作的原理
探测器是一种可以探测各种物理量的仪器,它在各种领域中都被广泛应用,比如医学、物理、化学等。那么,探测器的工作原理是什么呢?探测器的工作原理基本上是通过传感器测量物理量来实现的。传感器可以是很多不同的东西,比如光电二极管、加速度计、温度传感器等等。不同的传感器是用来衡量不同的物理量的。当传感器检测到某
光电探测器的工作原理
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放
光电探测器的工作原理
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放
光电探测器的工作原理
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放
光电探测器的工作原理
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放
光电探测器的工作原理
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一种电流放
光电探测器工作原理
纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质(即其他的材料,比如 锗 等)然后
光电探测器工作原理
看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质
光电探测器工作原理
看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质
光电探测器工作原理
看了半天。原来你说的就是同一个东西纯度更高(纯度决定着他可以接收更少的光子而获得电流,即可以感应更加敏锐),即灵敏度更高的 太阳能电池(即光子伏特电池)就是光电探测器的核心部分。他使用光电池产生的电能,经过放大后,计算,然后得到数值事实上PN结之所以产生,就是在高纯度硅上(单晶硅最容易)加入一些杂质
水平石墨烯pn异质结阵列构建-及其光电探测研究获进展
传统半导体p-n异质结是双极型晶体管和场效应晶体管的核心结构,是现代集成电路技术的基础。同样,构建石墨烯p-n异质结也是未来发展基于石墨烯的集成电路和光电探测技术的关键。由于石墨烯材料单原子层厚度的限制,难以通过传统集成电路制造工艺中的离子注入技术,实现石墨烯材料的可控掺杂。另外,原位生长掺杂、
燃气探测器的工作原理简介
可燃气体探测器采用高品质气体传感器,微处理器结合精密温度传感器能够智能补偿气敏元件的漂移,环境适应范围宽,工作稳定,无需调试,采用吸顶安装方式,安装简单,接线方便,广泛用于家庭、宾馆、公寓等存在可燃气体的场所进行安全监控。可检测 天然气、液化石油气,人工煤气。 探测器工作电压为直流供电。报警后
光电探测器的工作原理简介
光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。 光电子发射器件:光电管与光电倍增管是典型的光电子发射型(外光电效应)探测器件。其主要特点是灵敏度高,稳定性好,响应速度快和噪声小,是一
光电导探测器的工作原理
效应的一种。当照射的光子能量hv等于或大于半导体的禁带宽度Eg时,光子能够将价带中的电子激发到导带,从而产生导电的电子、空穴对,这就是本征光电导效应。这里h是普朗克常数,v是光子频率,Eg是材料的禁带宽度(单位为电子伏)。因此,本征光电导体的响应长波限λc为λc=hc/Eg=1.24/Eg (μm)
体效应二极管振荡器
砷化镓和磷化铟等材料的薄层具有负阻特性,因而无需P-N结就可以产生微波振荡。它的工作原理与通常由P-N结组成的半导体器件不同,它不是利用载流子在P-N结中运动的特性,而是利用载流子在半导体的体内运动的特性,是靠砷化镓等材料“体”内的一种物理效应工作的,所以这类器件被称为体效应二极管或耿氏二极管(
同质结激光器的工作原理
异质结就是由带隙及折射率都不同的两种半导体材料构成的PN结。同质结就是同一种半导体形成的结。双异质结是利用不同折射率的材料对光波进行限制,利用不同带隙的材料对载流子进行限制。拿P-P-N型双异质结激光器来说,注入到“结”界面处的载流子受到异质结的阻挡,形成很好的侧向限制,产生所谓的超注入现象。这就像
能带结构图怎么理解
如何考察结构能带如何考察一个能带(DOS)结构和复杂的相互作用 Part 1 Electric conductivity and Band structures固体计算最终结果将以能带结构展示出来,关于能带结构,固体中化学键分析,轨道之间的相互作用的解释等是一个复杂的过程,这里只是简单的根据本人的经
半导体探测器简介
半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,
有机无机杂化宽光谱探测器研究获进展
有机-无机杂化宽光谱探测器研究获进展 近年来,有机-无机复合的光探测器以其低能耗,响应速度快,体积和重量显著减小,且易大面积生产,高机械柔性等特点引起人们的极大关注,同时,该器件在光通信,触感器,红外探测等军事和国民经济的各个领域有着广泛的应用。 由于该器件不仅结合的有机半导体易大
砷化镓pn结注入式激光器的结构功能
中文名称砷化镓p-n结注入式激光器英文名称gallium arsenide p-n junction injection laser定 义以砷化镓材料构成p-n结,以晶体解理面构成谐振腔,当p-n结中注入大电流,便以平行于结面的方向射出激光的激光器。应用学科机械工程(一级学科),光学仪器(二级学科
砷化镓pn结注入式激光器的功能介绍
中文名称砷化镓p-n结注入式激光器英文名称gallium arsenide p-n junction injection laser定 义以砷化镓材料构成p-n结,以晶体解理面构成谐振腔,当p-n结中注入大电流,便以平行于结面的方向射出激光的激光器。应用学科机械工程(一级学科),光学仪器(二级学科
红外光电探测器的工作原理
光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器在军事和国民经济的各个领域有广泛用途。 红外光电探测器从本质上来说可以非常有效率的,与其可以防止周围可见光的干扰有极大地关系,它zui大的特点就在于可以进行无接触的探测,而且不损伤被测物体,这是很多消费者都希望的。目前的
四象限探测器的工作原理
四象限光电探测器实际由四个光电探测器构成,每个探测器一个象限,目标光信号经光学系统后在四象限光电探测器上成像。一般将四象限光电探测器置于光学系统焦平面上或稍离开焦平面。当目标成像不在光轴上时,四个象限上探测器输出的光电信号幅度不相同,比较四个光电信号的幅度大小就可以知道目标成像在哪个象限上(也就知道