半导体探测器的基本原理和特点

基本原理 半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号 [2] 。 我们把气体探测器中的电子-离子对、闪烁探测器中被 PMT第一打拿极收集的电子 及半导体探测器中的电子-空穴对统称为探测器的信息载流子。产生每个信息载流子的平均能量分别为30eV(气体探测器),300eV(闪烁探测器)和3eV(半导体探测器)。 半导体探测器的特点 1) 能量分辨率最佳 ; 2) γ射线探测效率较高,可与闪烁探测器相比。 常用半导体探测器有: (1) P-N结型半导体探测器; (2) 锂漂移型半导体探测器; (3) 高纯锗半导体探测器;......阅读全文

半导体探测器的基本原理和特点

  基本原理  半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号 [2] 。  我们把气体探测器中的电子-离子对、闪烁探测器中被 PMT第一打拿极收集的电子 及半导体探测器中的电子-空穴对统称为探测器的信息载流子。产生每个信息载流

半导体探测器的趋势和应用领域

  趋势  上述各种γ射线探测器均须在低温下工作。人们日益注意探索可在常温下探测γ射线的半导体材料。一些原子序数较大的化合物半导体,如碲化镉、砷化镓、碘化汞、硒化镉等,均已用于制备X、γ射线探测器,并已取得不同程度的进展。  应用领域  随着科学技术不断发展需要,科学家们在锗锂Ge(Li)、硅锂Si

半导体探测器简介

  半导体探测器是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似,故又称固体电离室。半导体探测器的基本原理是带电粒子在半导体探测器的灵敏体积内产生电子-空穴对,电子-空穴对在外电场的作用下漂移而输出信号。常用半导体探测器有 P-N结型半导体探测器、 锂漂

半导体探测器简介

半导体探测器(semiconductor detector)是以半导体材料为探测介质的辐射探测器。最通用的半导体材料是锗和硅,其基本原理与气体电离室相类似。半导体探测器发现较晚,1949年麦凯(K.G.McKay)首次用α 射线照射PN结二极管观察到输出信号。5O年代初由于晶体管问世后,

半导体探测器的发展历史

  半导体探测器的前身可以认为是晶体计数器 。早在1926年就有人发现某些固体电介质在核辐射下产生电导现象。后来,相继出现了氯化银、金刚石等晶体计数器。但是,由于无法克服晶体的极化效应问题,迄今为止只有金刚石探测器可以达到实用水平。半导体探测器发现较晚,1949年开始有人用α 粒子照射锗半导体点接触

半导体探测器的基础知识

半导体原子规则排列成点阵状态。其最小单元叫作晶包,对锗来讲是小四面体,即金刚石结构。电子在晶体中为晶包所公有,形成能带结构,如图4-1-1所示。下面的能带称为价带,又称满带,平时被电子填满。中间是禁带(又称能隙)。上面是导带,平时没有电子(又称空带)。在价带以下还有更低能量的价带;在导带以上还有更高

半导体探测器的应用领域

随着科学技术不断发展需要,科学家们在锗锂Ge(Li)、硅锂Si(Li)、高纯锗HPGe、金属面垒型等探测器的基础上研制出许多新型的半导体探测器,如硅微条、Pixel、CCD、硅漂移室等,并广泛应用在高能物理、天体物理、工业、安全检测、核医学、X光成像、军事等各个领域。世界各大高能物理实验室几乎都采用

气体探测器的特点和技术指标

  特点  采用电化学和催化燃烧式传感器(可燃气体),性能稳定。  精度高,反应速度快。  4mA-20mA标准信号输出。  功耗低。  技术指标  1.检测气体:天然气,液化石油气,煤气,氢气,醇,苯等可燃或有毒气体  2.检测范围:0-100%LEL\ppm\%LEL  3.基本误差:《±5%F

半导体探测器的实际操作运用

  丁肈中领导的AMS实验,目标是在宇宙线中寻找反物质和暗物质。它的探测器核心部分的径迹室采用了多层硅微条探测器。由美国、法国、意大利、日本、瑞典等参加的GLAST实验组的大面积γ射线太空望远镜的核心部分也使用了多层硅微条探测器,总面积大于80平方米,主要用来作为γ→ e-+e+ 的对转换过程的径迹

半导体制冷技术的特点和应用

半导体制冷技术是目前的制冷技术中应用比较广泛的。农作物在温室大棚中生长中,半导体制冷技术可以对环境温度有效控制,特别是一些对环境具有很高要求的植物,采用半导体制冷技术塑造生长环境,可以促进植物的生长。半导体制冷技术具有可逆性,可以用于制冷,也可以用于制热,对环境温度的调节具有良好的效果。

烷烃类探测器的简介和特点相关介绍

  是结实耐用,操作简便的智能型可燃气体探测器,被设计用以检测可燃性烷烃类气体浓度在爆炸下限0~100%的变化。这种探测器使用一种获得ZL的“小型即插型可更换”红外线光学传感器。红外线传感器的特点是长时间的工作稳定性及最少的阶段性维护。红外线气体传感器在某些测量环境下是对于传统的催化燃烧式传感器的一

哪些半导体光电探测器有增益

雪崩光电二极管。它应用光生载流子在二极管耗尽层内的碰撞电离效应而获得光电 流的雪崩倍增。这种器件具有小型、灵敏、快速等优点,适用于以微弱光信号的探测和接收,在光纤通信、激光测距和其他光 电转换数据处理等系统中应用较广。

半导体X射线探测器相关介绍

  半导体探测器是以半导体材料为探测介质的辐射探测器。锗和硅是我们最通用的半导体探测材料,其基本原理与气体电离室相类似。晶体计数器可以认为是半导体探测器的前身,20世纪初期人们发现在核辐射下可以通过某些固体电介质产生电导现象,在这之后金刚石、氯化银等晶体计数器又相继被人们发明。可是我们至今无法解决晶

半导体制冷器简介和特点

  半导体制冷器(Thermoelectric cooler)是指利用半导体的热-电效应制取冷量的器件,又称热电制冷器。用导体连接两块不同的金属,接通直流电,则一个接点处温度降低,另一个接点处温度升高。  主要特点  半导体制冷器具有无噪声、无振动、不需制冷剂、体积小、重量轻等特点,且工作可靠,操作

“新型CZT半导体X射线和γ射线探测器研制”专项通过验收

  科技部评估中心于2017年4月14日在北京组织了由我校主持完成的首批国家重大科学仪器设备开发专项“新型CZT半导体X射线和γ射线探测器研制”项目综合验收评审会。以中国工程院潘自强院士为验收专家组组长的13名评审专家对项目进行了严格审查,最终以97.4分顺利通过了项目综合验收。  该项目于2011

扫描电镜的特点和基本原理

  扫描电镜(SEM)是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。扫描电镜的优点是,①有较高的放大倍数,2-20万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。 目前的扫描电镜

PN结半导体探测器的类型

    扩散结(Diffused Junction)型探测器  采用扩散工艺——高温扩散或离子注入 ;材料一般选用P型高阻硅,电阻率为1000;在电极引出时一定要保证为欧姆接触,以防止形成另外的结。  金硅面垒(Surface Barrier)探测器  一般用N型高阻硅,表面蒸金50~100μg/c

核酸提取仪基本原理和特点

核酸提取仪(Nucleic Acid Extraction System)是应用配套的核酸提取试剂来自动完成样本核酸提取工作的仪器。广泛应用在疾病控制中心、临床疾病诊断、输血安全、法医学鉴定、环境微生物检测、食品安全检测、畜牧业和分子生物学研究等多种领域。分类:1. 根据仪器型号大小不同划分 [1]

激光探测器的功能特点

激光探测器,当激光照射到表面后,会生成电流,电流大小正比于输入的光功率,通过探测电流大小,就能知道对应的光功率了。

辐射探测器的性能特点

  辐射探测器的主要性能是探测效率、分辨率、线性响应、粒子鉴别能力。将辐射能转换为可测信号的器件。探测器的基本原理是,辐射和探测介质中的粒子相互作用手持式化学探测器,将能量全部或部分传给介质中的粒子,在一定的外界条件下,引起宏观可测的反应。对于光学波段,辐射可以看作光子束,光子的能量传给介质中的电子

原子吸收光谱的特点和基本原理

   原子吸收光谱,又称原子吸收分光光度分析。原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元素含量的一种仪器分析方法。  特点:1、灵敏度高  2、精密度好  3、选

PN结半导体探测器的工作原理

  多数载流子扩散,空间电荷形成内电场并形成结区。结区内存在着势垒,结区又称为势垒区。势垒区内为耗尽层,无载流子存在,实现高电阻率,远高于本征电阻率 [4] 。  在P-N结上加反向电压,由于结区电阻率很高,电位差几乎都降在结区。  反向电压形成的电场与内电场方向一致。  在外加反向电压时的反向电流

高纯锗(HPGe)半导体探测器的相关介绍

  简介  随着锗半导体材料提纯技术的进展,已可直接用超纯锗材料制备辐射探测器。它具有工艺简单、制造周期短和可在室温下保存等优点。用超纯锗材料还便于制成X、γ射线探测器,既可做成很大灵敏体积,又有很薄的死层,可同时用来探测X和γ射线。高纯锗探测器发展很快,有逐渐取代锗。  工作原理  采用高纯度的

基于有机晶体新型太赫兹发射和探测器特点

主要特点:基于飞秒泵浦脉冲光整流产生太赫兹基于非线性光学混频产生太赫兹泵浦波长:1.2-1.6 um;  0.7-0.8 um 可用高效的电光太赫兹探测器 主要应用:太赫兹成像及光谱太赫兹检测

磁性半导体的应用特点

磁性半导体(英语:Magnetic semiconductor)是一种同时体现铁磁性(或者类似的效应)和半导体特性的半导体材料。如果在设备里使用磁性半导体,它们将提供一种新型的导电方式。传统的电子元件都是以控制电荷自由度(从而有n型和p型半导体)为基础工作,磁性半导体能控制电子的自旋自由度(于是有了

常见的半导体材料特点

常见的半导体材料有硅(si)、锗(ge),化合物半导体,如砷化镓(gaas)等;掺杂或制成其它化合物半导体材料,如硼(b)、磷(p)、锢(in)和锑(sb)等。其中硅是最常用的一种半导体材料。有以下共同特点:1.半导体的导电能力介于导体与绝缘体之间2.半导体受外界光和热的刺激时,其导电能力将会有显著

气体发生器的特点和基本原理介绍

气体发生器程序控制采用了高灵敏度,微电脑自动跟踪系统,取消了稳压阀,实现了自动恒压,恒流,使压力稳定精度范围小于0.001MPA,并可根据仪器所需用气量的大小实现全自动调节,当用户停止用气时,仪器自动停止产氢,因此杜绝了系统超压的现象,以保证安全。气体发生器特点:1.使用安全使用时气压低,关机后残余

光通信的高性能半导体激光器和探测器的研发项目验收

  8月28日,福建省科技厅组织专家组对中国科学院福建物质结构研究所苏辉研究员主持的福建省科技重大专项专题“光通信的高性能半导体激光器和探测器的研发与产业化”进行验收。专家组听取了项目组的工作汇报,审阅了相关材料,经现场考察、质询和讨论,一致同意通过验收。  该项目研制出满足光通信需求的高性能DFB

原子力显微镜基本原理和特点

原子力显微镜是以扫描隧道显微镜基本原理发展起来的扫描探针显微镜。原子力显微镜的出现无疑为纳米科技的发展起到了推动作用。以原子力显微镜为代表的扫描探针显微镜是利用一种小探针在样品表面上扫描,从而提供高放大倍率观察的一系列显微镜的总称。原子力显微镜扫描能提供各种类型样品的表面状态信息。与常规显微镜比较,

非晶半导体的产品特点

广义而言,凡不具有长程序的物质统称为非晶体,有时也称为无定形(Amorphous)。至今国际上对非晶态物质尚无统一的定义和提法,一般认为与其说“非晶态物质是什么什么”,不如说“非晶态物质不是什么什么”。因为非晶态中的无序不是单纯的混乱,而是残缺不全的秩序,即非晶态物质中还存在着某种程序的有序性,这就