学者合作在酸性介质电解水释氧催化剂研究方面取得进展

图1(a,b)扭转应变的GB-Ta0.1Tm0.1Ir0.8O2-δ纳米催化剂TEM表征;(c-f)GB-Ta0.1Tm0.1Ir0.8O2-δ纳米催化剂的几何相位分析;(g,h)TaxTmyIr1-x-yO2-δ纳米催化剂的电化学表征 在国家自然科学基金项目(批准号:21776248、21676246)等资助下,浙江大学张兴旺团队与威斯康星大学麦迪逊分校Song Jin团队合作,在质子交换膜电解水制氢领域取得进展,相关研究成果以“掺杂协同扭转应变效应提高酸性释氧电催化剂的活性和稳定性(Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers)”为题,于2021年10月25日在《自然·纳米技术》(Nature Nanotechnology)上发表。论文链接:https......阅读全文

科学家设计高活性和酸稳定性非贵金属催化剂

电解水是清洁能源开发利用的重要过程,而制备非贵金属电解水催化剂是清洁能源开发利用中亟待破解的关键难题。目前,在电解水材料的开发中,设计高活性且具有酸性环境中超长的电解稳定性的材料是面临的一大挑战。中国科学院大连化学物理研究所研究员肖建平团队与日本理化学研究所教授中村龙平团队合作,通过在金属氧化物Co

科学家设计高活性和酸稳定性非贵金属催化剂

  电解水是清洁能源开发利用的重要过程,而制备非贵金属电解水催化剂是清洁能源开发利用中亟待破解的关键难题。目前,在电解水材料的开发中,设计高活性且具有酸性环境中超长的电解稳定性的材料是面临的一大挑战。   中国科学院大连化学物理研究所研究员肖建平团队与日本理化学研究所教授中村龙平团队合作,通过在金

电解水材料设计研究取得进展

上方豌豆射手添加Co3O4,发射少量豌豆(代表氧气);下方豌豆射手添加Co2MnO4,可长时间、稳定、快速地发射豌豆,代表高效稳定地催化电解水反应近日,中国科学院大连化学物理研究所理论催化创新特区研究组研究员肖建平团队与日本理化学研究所教授中村龙平团队,在电解水材料设计研究中取得新进展,制备了尖晶石

安培级电流下电解水催化剂超稳定性的原理

近日,大连化物所理论催化创新特区研究组(05T8组)肖建平研究员团队与日本理化学研究所中村龙平教授团队在电解水材料设计中取得新进展,制备了尖晶石构型的Co2MnO4材料,实现了超高效安培级电流密度电解水活性,并同时实现在酸性环境中超长的电解稳定性。  制备高活性且在酸性环境中具备超长的电解稳定性非贵

新型低成本非贵金属电解水催化剂实现18.55%转换效率

  氢能是一种理想的能源载体,开发大规模、廉价、清洁、高效的制氢技术是氢能有效利用的关键。电解水由于环境友好、产品纯度高以及无碳排放而成为具有应用前景的绿色制氢方法之一。限制电解水制氢大规模应用的最重要瓶颈是如何大幅降低其电能消耗,因而大幅降低制氢成本。其关键是发展廉价、易制备的高性能非贵金属电解水

科学家开发出高效碱性电解水单原子合金催化剂

  近日,中国科学院大连化学物理研究所研究员章福祥团队设计合成了一种单原子铱修饰镍合金催化剂,用于碱性电解水析氢、析氧,具有水分子活化与H-H、O-O偶联功能,显著降低了析氢与析氧的过电势。相关成果发表在《先进材料》上。  太阳能光催化技术是实现太阳能至化学能转化的重要方式之一,而高效助催化剂的开发

中国科大研制白铁矿型电解水制氢电催化剂

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/505283.shtm近日,受到在自然界酸性环境中能够稳定存在的白铁矿石的启发,中国科学技术大学高敏锐教授课题组研制了一种用于质子交换膜(PEM)电解池阴极析氢反应的白铁矿型催化剂,其可在1 A cm-2的

非贵金属析氢催化剂研究获进展

  近日,中国科学院合肥物质科学研究院强磁场科学中心、中国科学技术大学合肥微尺度物质科学国家实验室(筹)与材料系双聘研究员陈乾旺课题组发现,氮掺杂石墨烯层包覆的合金粒子作为酸性条件下电解水制氢(HER)催化剂,表现出优异的性能和循环稳定性。相关研究成果以Non-precious alloy enca

福建物构所核壳合金纳米催化剂电催化全解水研究取得进展

原文地址:http://www.cas.cn/syky/202103/t20210329_4782676.shtml   随着质子交换膜电解池(PEMWEs)的发展,在酸性条件下水解制氢被认为是高效转化可持续氢能最具前景的方式之一。电解水包括两个半反应——阳极的析氧反应(OER)和阴极的析氢反应(

德国采用聚合物涂层催化剂保护“人造树叶”

  由于太阳能具有波动性,因此解决其存储问题是迫切需要。一种方法是使用太阳能电池内部产生的电能通过电解水,在这个过程中产生的氢可以存储作为燃料。   德国亥姆霍兹柏林材料与能源研究中心(HZB)的科学家们,使用高效架构修改了超直型太阳能电池,通过合适的催化剂从水中获得氢。这种复杂的太阳能电池涂有两

高效率长寿命金属玻璃电解水催化剂研究取得进展

  开发新型可再生清洁能源是当前材料领域关注的焦点问题。氢气,由于极高的质量能量密度、产物无污染等优势成为了极具潜力的可替代清洁能源,而利用高性能催化剂实现低能耗的水分解制氢是当前获得氢能源的主要手段之一。如何提高催化剂的性能,包括催化活性及其长期稳定性是影响氢能源应用的关键问题之一。迄今为止,已知

大连化物所邓德会团队实现利用铠甲催化剂去耦合电解水

  近日,中国科学院大连化学物理研究所催化基础国家重点实验室二维材料与能源小分子转化创新特区研究组(05T6组)研究员邓德会团队以铠甲催化剂为电极,构建出高效稳定的电解水解耦装置。该研究工作为电力削峰填谷策略提供了新思路。  解耦电解水是一种具有潜力的削峰填谷策略,可以将用电低谷期的过剩电力利用起来

快速获得铁基催化剂-电解水制氢研究获新进展

  近日,安徽工业大学材料科学与工程学院新能源材料团队在国际权威期刊《先进功能材料》(Advanced Functional Materials)上发表了电催化水分解制氢最新研究成果,该研究可在室温条件下快速获得单元金属铁基催化剂。  据了解,电解水制取氢气是目前获取可再生清洁氢能源的有效方式之一,

酸性介质中镓的吸附和萃取性质及回收工艺研究

镓是一种稀散金属,其在自然界中虽然分布很广,但几乎没有单一的,具有开采价值的镓矿床,而是大都以伴生矿存在于铝土矿和闪锌矿以及一些煤层中。随着科学技术的发展,镓早已成为当代高新技术不可或缺的支撑材料。世界上金属镓的储量量并不大,但我国金属镓资源却很丰富。从矿产、废渣、工业废水中回收提取金属镓,无论对于

电磁流量计中的钽电极可耐酸性介质吗

电磁流量计中的钽电极可耐酸性介质。之所以选用钽作为电极,就是因为钽金属的高耐腐蚀性。钽是一种高密度的坚硬金属,具高延展性、导热性和导电性;钽属于难熔金属,常作为合金的次要成分;化学活性低,适宜代替铂作实验器材的材料。钽能抵抗酸的腐蚀,它在150 °C以下甚至能够抵抗王水的侵蚀。做成电磁流量计中的电极

Ni3Se4@NiFe水滑石纳米片的制备及其全解水研究获进展

  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李越课题组在分级异质结构Ni3Se4@NiFe 水滑石纳米片(LDH)的制备及其全解水研究方面取得新进展,相关研究结果发表在Nanoscale Horizons (DOI:10.1039/x0xx00000x)上。  随着能源危机和环境问题的

新型催化剂可高效生产氢能源

  美国研究人员在新一期《先进能源材料》上报告说,他们研发出一种新型低成本电解水催化剂,有助于高效生产氢能源。   能源转换是发展清洁能源的关键。风能和太阳能发电都是间歇性的,而电网需要持续稳定的输入,因此风能和太阳能发电不能直接接入电网,而需要介质存储起来或转换成其他形式的能源。眼下最有前景的途径

厉害了-储存可再生能源的技术手段有新突破

  记者从科技部网站获悉,瑞士保罗谢尔研究所(PSI)最近成功开发出一种可用于电解水获取氢气的高效纳米催化剂,不需要使用贵金属,因而价格低廉。  据悉,利用太阳能和风能发电,并用所获得的电能通过电解水生产氢气,是重要的储存可再生能源的技术手段。目前使用的加速电解水反应的催化剂有两类,一种催化效率高但

电解水制氢中的非贵金属催化剂之金属磷化物

金属磷化物与普通金属化合物(如碳化物、氮化物、硼化物和硅化物)具有相似的物理特性,其具有较高的机械强度、导电性和化学稳定性。不同于碳化物和氮化物相对简单的晶体结构(如面心立方、密堆六方或简单六方),由于磷原子的半径大(0.109 nm),磷化物的晶体结构是三斜。磷化物中斜方构造子与硫化物类似,但金属

理化所提出电化学重整废弃PET塑料耦合海水制氢策略

氢气具有热值高、清洁、可再生等优点。相对于以化石能源为基础的传统制氢方式,利用可再生能源(如太阳能、风能等)驱动的电化学技术,直接分解水制氢,被认为是未来通向“绿氢经济”的最佳途径之一。其中,直接海水电解因无需依赖淡水资源而成为理想的绿色制氢方式之一,但高成本以及海水腐蚀带来的催化剂失活成为制约其发

铁锈纳米网成高效水分解平台

  据美国物理学家组织网2月10日报道,美国波士顿大学最近开发出一种从水中捕获氢的新型清洁燃料技术:用硅化钛(TiSi2)微金属丝做内芯,再包上一层普通的铁锈(三氧化二铁)外层编成纳米网,创造出一种经济高效的水分解平台。相关研究发表在《美国化学协会会刊》网络版上。   在水中通电也

研究丙烷无氧脱氢催化剂方面取得进展

图1 ZnO-S-1以及商业K-CrOx/Al2O3类似催化剂的丙烷脱氢/氧化再生催化性能,(a) 转化率;(b) 时空收率;(c) ZnO-分子筛的丙烯生成速率;(d) ZnO-金属氧化物的丙烯生成速率  在国家自然科学基金项目(批准号:21961132026、21878331、91645108、

中国科大等基于自旋态精细调控实现高效电解水催化产氧

  优化过渡金属氧化物的催化性能实现高效电解水,是当前能源化学领域的一个研究难点;调控电子强关联过渡金属氧化物的自旋态,是凝聚态物理领域的一个经典课题。当二者相遇,是否会碰出“火花”?近日,中国科学技术大学周仕明课题组、曾杰课题组与南开大学胡振芃课题组密切合作,在钙钛矿钴氧化物中为它们创造了相遇机会

科研人员制备出Co掺杂MoS2双功能全分解水电催化剂

近期,中国科学院合肥物质科学研究院固体物理研究所环境与能源纳米材料中心在Co掺杂MoS2双功能全分解水电催化剂催化活性调控方面取得进展,相关研究成果发表在国际期刊《先进材料》(Adv. Mater., 2018)和《化学通讯》(Chem. Commun., 54, 3859-3862 (2018))

Mo掺杂Ni2P电催化析氢电极纳米材料研究中获进展

  近日,中国科学院合肥物质科学研究院固体物理研究所微纳技术与器件研究室李越课题组,在电催化析氢电极材料的构筑及应用方面研究取得进展,相关研究结果发表在Nanoscale上,文章被遴选为当期的Inside back cover。  氢能作为无污染的生态清洁能源,备受关注。电解水制氢是实现工业化、廉价

电解水制氢中的非贵金属催化剂之金属氮化物

金属氮化物(TMNs)具有独特的物理和化学性质。一方面,氮原子的加入改变了母体金属d带的性质,导致金属d带的收缩,使得TMNs的电子结构更类似于贵金属(如Pd和Pt)。另一方面,氮由于原子半径小可以嵌套在晶格的间隙中,所以金属原子的排列总是保持紧密堆积或接近紧密堆积,赋予了TMNs较高的电子导电率。

电解水制氢中的非贵金属催化剂之金属硒化物

硒(Se)和硫(S)都是元素周期表VIA族的元素,硫在第三周期,硒在第四周期。因此这两个元素不仅一些有相似之处,也有不同点。类似的是,它们最外层都有6个电子和相似的氧化数。元素的最外层电子排布往往决定了这些元素形成的化合物的化学性质,这意味着相对于金属硫化物,金属硒化物对HER也有相似的活性。随着对

电解水制氢中的非贵金属催化剂之金属硼化物

与金属磷化物类似,金属硼化物材料也具有一定的HER催化活性,已获得研究人员的关注并进行研究。金属硼化物(及其合金)可以简单的通过金属卤化物和硼氢化盐溶液反应制备。例如,已对掺杂或纯非晶态硼化镍(Ni2B)在碱性介质中的HER电催化性能进行探索。最近,硼化钼(MoB)在酸性和碱性条件下均具有较好电催化

中国科大设计出一种基于钴纳米晶的电解水产氢催化剂

  近日,中国科学技术大学教授马明明课题组设计了一种由钴纳米晶自组装形成的纳米空心球,可以作为催化剂在中性水溶液中高效地催化电解水产生氢气,并且可以在大电流密度下长时间稳定工作。该研究成果在线发表在Angew. Chem. Int. Ed.(doi:10.1002/anie.201601367)上,

电解水制氢中的非贵金属催化剂之金属硫化物

功能仿生催化剂的开发是一个重要的进展,为大规模可持续的氢气生产开辟了道路。尽管自然界存在的固氮酶和氢化酶可以催化析氢反应,但是酶基器件难以为高水平的氢气生产做出重大贡献。这些精妙的生物催化剂具有出色的催化选择性,能够在自然环境中运作,但在极端条件下(如强酸性和碱性介质)将迅速失活。受到固氮酶和氢化酶