Antpedia LOGO WIKI资讯

银河系中心或有高能粒子加速器及宇宙线潜在屏障

施普林格·自然旗下学术期刊《自然-通讯》最新发表一篇天文学研究论文称,天文学家发现银河系的中心可能存在高能粒子加速器,以及一种抑制周围宇宙线海中的射线穿过其中心分子区域的屏障。这些发现或有助于人们理解宇宙线的起源。 该论文介绍,银河宇宙线是起源于太阳系外的高能粒子,最终会抵达地球。它们对于理解极端天体物理环境中的高能粒子十分有用,而银河系中心被认为是宇宙线的一个来源。 此前发现,银河系宇宙线以相对均匀的“宇宙线海”状态分布在银河系中。天文学家认为,经过与超新星残骸或恒星风的相互作用,宇宙线在银河系内得到加速,使其在整个银河系内传播扩散。但是要理解极高能宇宙线(TeV-PeV),需要进一步探索中心分子区(CMZ)不同的发射成分。 最新研究论文通讯作者兼第一作者、中国科学院紫金山天文台研究员黄晓渊和同事通过重新分析费米大视场望远镜的银河CMZ数据,确定了一个GeV-TeV宇宙线成分(一个早先TeV-PeV来源的低能成分)......阅读全文

暗物质粒子探测卫星“悟空”将延长工作2年部分成果超预期

  暗物质粒子探测卫星“悟空”的研制团队17日宣布,鉴于卫星目前运行状态依然良好、关键科学数据仍在累积,卫星科研团队已与各保障部门商定,让“悟空”延长两年工作时间。  暗物质卫星“悟空”是我国首颗天文卫星。到12月17日,卫星发射已满3年,达到预期使用寿命。截至这一日,“悟空”已在500公里外的太阳

中国西藏ASγ实验发现迄今最高能量宇宙线存在银河系证据

西藏ASγ实验团队观测到的超高能弥散伽马射线事例在银道坐标系下的分布:这些超高能弥散伽马射线的能量在400TeV到1PeV之间,表现出向银盘(图中水平中线)集中分布的特点;灰色阴影区域是ASγ实验无法观测的区域。背景色轮廓显示了银河系坐标中氢原子的分布。(来源:https://lambda.gsfc

国家系统布局未来20年重大科技基础设施建设

  国家发展和改革委员会同科技部等8部门编制的《国家重大科技基础设施建设中长期规划(2012―2030年)》(简称《规划》),目前已经国务院批准印发。其中,包括加速器驱动嬗变研究装置、上海光源线站工程、中国南极天文台等16项重大科技基础设施建设,成为我国“十二五”时期的建设重点。据悉,该《规划》是我

“拉索”七年:向着宇宙线研究的最前沿

从“九章”量子计算原型机到新一代人工智能,从“奋斗者”号全海深载人潜水器到解密衰老……面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,“十三五”期间,中国科学院用实实在在的成果担起了新时代科技创新的使命。 本报今起开设“‘十三五’科技创新成就巡礼”栏目,通过讲述一系列重大成

LHAASO重磅:银河系粒子加速能力超乎想象

   2020年4月初的一天,像往常一样,中国科学院高能物理所副研究员王玲玉坐到电脑前,打开高海拔宇宙线观测站(LHAASO)采集到的数据。 很快,一个异常信号进入了她的视线。反复检查几次后,她决定把情况报告给她的同事、研究员陈松战,她调整好呼吸,以尽可能平静的语气说:“LH

“探秘”中国暗物质直接探测与极深地下实验室

  暗物质  暗物质被喻为现代物理学天空上的一朵乌云,是近年来研究的热点和难点。中国物理学家们在暗物质探测实验和理论上有颇多建树,“悟空”暗物质粒子探测卫星、中国锦屏地下实验室开展的暗物质粒子探测等,都为解开“暗物质之谜”贡献了中国力量。不仅如此,在地下实验室建设和运行的过程中,科学家们认识到极深地

粒子探测器“冰立方”:藏在南极的中微子“捕手”

位于美国阿蒙森-斯科特南极站(Amundsen-Scott South Pole Station)的冰立方天文台在朝霞中迎接破晓,这里是科学家们处理冰下传感器数据的地方。①科学家正在标示一架粒子探测传感器,它是冰立方中微子天文台上的部分装置,该天文台于2010年12月份

《自然》2020年十大科学发现解读

2020年12月14日,Nature公布了其评选出的2020年十大科学发现,其中包括:冷冻电镜突破、压力导致白发的原因、南级臭氧法逐渐恢复、银河系中的快速射电暴等。这十大科学发现中,有2篇论文发表于Science杂志,其余12篇均发表在Nature杂志上。为了让广大读者更深入地了解这十大科学发现的重

诺奖得主小柴昌俊是如何成功探测到中微子

  11月12日,日本实验高能物理学家小柴昌俊去世。  小柴昌俊生于1926年,因为对“宇宙中微子探测”的贡献,与戴维斯(Ray Davis Jr.)分享了2002年诺贝尔物理学奖的一半,另一半授予了对宇宙X射线探测做出重要贡献的贾科尼(R. Giacconi)[1]。  小柴昌俊是一位杰出的科学家

什么是暗物质:“隐形”的大多数

星系及其暗物质分布示意图。  中国科学院不久前表示,今年年底将发射一颗暗物质粒子探测卫星。这颗卫星的一个使命是寻找暗物质存在的证据。从20世纪30年代至今,科学界从未停止对暗物质的探索。那么,什么是暗物质?找到它难在哪里?探索它又有何意义?  暗物质不发光,不发出电磁波,从来没有被直接“看”到过  

银河系中心或有高能粒子加速器及宇宙线潜在屏障

  施普林格·自然旗下学术期刊《自然-通讯》最新发表一篇天文学研究论文称,天文学家发现银河系的中心可能存在高能粒子加速器,以及一种抑制周围宇宙线海中的射线穿过其中心分子区域的屏障。这些发现或有助于人们理解宇宙线的起源。  该论文介绍,银河宇宙线是起源于太阳系外的高能粒子,最终会抵达地球。它们对于理解

中科院发布改革开放四十年40项标志性重大科技成果

  12月19日,中国科学院发布改革开放四十年40项标志性重大科技成果。  中科院以“三个面向”为线索,在系统梳理改革开放40年来广大科研人员取得的众多重大科技成果基础上,发布面向世界科技前沿成果15项、面向国家重大需求成果15项、面向国民经济主战场成果10项。  习近平总书记在庆祝改革开放40周年

2020年世界科技发展回顾·基础研究

俄罗斯 从化合物溶液中制备出锝 量子和光学研究亮点纷呈2020年,俄罗斯科学家在量子、光学和计算机领域不断发力,取得了较突出的成果。 俄罗斯审计咨询公司FinExpertiza发布研究报告称,2010—2018年间,俄罗斯科研和研发开支从5230亿卢布(约83亿美元)增至1万亿卢布(约158

马宇蒨研究员荣获中国天文学会张钰哲奖

  11月1日,为期5天的中国天文学会第十二次全国会员代表大会暨2010年学术年会在广西南宁召开。大会将第十届中国天文学会“张钰哲奖”(2009-2010年度)授予中科院高能所粒子天体物理中心马宇蒨研究员。  马宇蒨研究员长期从事粒子天体物理的观测研究,取得大量高显示度的成果,为我国粒子天体物理学的

与中科院空间科学卫星科学研究联合基金项目指南

一、设立宗旨 空间科学卫星科学研究联合基金由国家自然科学基金委员会与中国科学院共同出资设立,旨在发挥国家自然科学基金的导向和协调作用,吸引和调动全国高等院校、科研机构的研究力量,充分利用中国科学院研制的空间科学卫星平台开展前沿领域和综合交叉领域研究,开拓新的研究方向,发挥空间科学卫星的效能

十项目入选国家重大科技基础设施建设十三五规划

  分析测试百科网讯 近日,国家发展改革委等多部委办联合发布“关于印发国家重大科技基础设施建设‘十三五’规划的通知”(以下简称“通知”),提出重点任务:面向世界科技前沿、面向经济主战场、面向国家重大需求,以能源、生命、地球系统与环境、材料、粒子物理和核物理、空间和天文、工程技术等7个科学领域为重点,

建大国重器,让高能物理迸发无限能量

  在中国科学院高能物理研究所(以下简称高能物理所)里,有一台被写进教科书的大科学装置——北京正负电子对撞机。30年前,这台对撞机竣工,成为我国历史上第一台高能加速器。  2013年7月17日,习近平总书记视察中国科学院的第一站就来到高能物理所,了解研究所的发展及北京正负电子对撞机的运行情况。  “

《环球科学》2011年十大科学新闻评选

  “十大科学新闻”评选是《环球科学》(《科学美国人》杂志中文版)每年一度的重头戏,也是本年度全球各大科学领域的重大事件进行的一次全面盘点。经过专业编辑和专家团队的商讨,《环球科学》初步挑选出了30条候选新闻,接受网友的点评和投票。  1、超光速粒子挑战爱因斯坦相对论  9月23日,欧洲核子研究中心

建大国重器,让高能物理迸发无限能量

在中国科学院高能物理研究所(以下简称高能物理所)里,有一台被写进教科书的大科学装置——北京正负电子对撞机。30年前,这台对撞机竣工,成为我国历史上第一台高能加速器。2013年7月17日,习近平总书记视察中国科学院的第一站就来到高能物理所,了解研究所的发展及北京正负电子对撞机的运行情况。“自那之后,我

常进院士:希望建设更多“天眼”

13年前,“光谱之王”郭守镜望远镜(以下简称LAMOST)横空出世;6年前,暗物质粒子探测卫星“悟空”号划破苍穹;2021年,中国天眼500米口径球面射电望远镜(以下简称FAST)面向全球开放;未来,冷湖天文观测基地、空间站巡天望远镜将给我们带来更多的惊喜……    当前,中

常进院士:希望建设更多“天眼”

13年前,“光谱之王”郭守镜望远镜(以下简称LAMOST)横空出世;6年前,暗物质粒子探测卫星“悟空”号划破苍穹;2021年,中国天眼500米口径球面射电望远镜(以下简称FAST)面向全球开放;未来,冷湖天文观测基地、空间站巡天望远镜将给我们带来更多的惊喜…… 当

阿尔法磁谱仪5年太空实验结果发布

  “用一个并不十分恰当的比喻来形容这次AMS的突破,那就是如果说我们之前对宇宙线的认知是一只‘乒乓球’的范围,现在已经扩展到了一只‘足球’的面积。”12月9日,诺贝尔物理奖获得者丁肇中教授主持的阿尔法磁谱仪(AMS)项目对外发布了5年太空实验的结果和突破,AMS热系统总负责人、山东大学空间热科学研

中科院发布改革开放四十年40项标志性重大科技成果

  二 面向国家重大需求(15项,不含专用领域)  16 载人航天与探月工程的科学与应用  中科院是中国载人航天与探月工程的发起者、组织者之一,是科学与应用目标的提出者和实施者,50余家院属单位承担了大量重要工程任务和多项协作配套任务,突破了大批关键核心技术,为工程实施提供了强有力科技支撑。  在载

西藏ASγ实验发现超高能宇宙线加速候选天体

  近期,中日合作团队利用我国西藏羊八井ASγ实验阵列,在国际上首次发现距地球2600光年的超新星遗迹SNR G106.3+2.7发射出超过100 TeV(100万亿电子伏特)的伽马射线。这些伽马射线可能是被SNR G106.3+2.7中的激波加速到PeV的宇宙射线(主要成分为质子)与附近的分子云碰

悟空号获得TeV-100 TeV能区最精确的质子宇宙线能谱并发...

悟空号获得TeV-100 TeV能区最精确的质子宇宙线能谱并发现新的谱结构我们赖以生存的地球无时无刻不在经受来自外太空中高能粒子的轰击,这些粒子包括各种原子核、正负电子、高能伽马射线和中微子等,它们统称为宇宙线。人类对宇宙线的观测和研究已经长达一个世纪。宇宙线曾经对基本粒子物理学科起到了非常重要的作

阿尔法(α)磁谱仪空间探测

2016年12月8日,正值阿尔法磁谱仪(AMS)进入太空运行的五年之际,该项目的主持人、诺贝尔物理奖获得者、美籍华人科学家丁肇中教授在欧洲核子中心(CERN)发布了AMS五年太空实验的结果。丁肇中认为,AMS项目做了五年,得出了很多不一样的结论,颠覆了我们对宇宙线的认识。这次发布的太空实验结果,表明

宇宙微波背景辐射

宇宙微波背景辐射1965年,美国贝尔电话实验室的彭齐亚斯(Arno Penzias,1933-)(左一)和威尔逊(R.W.Wilson)(左二)无意中发现了大爆炸理论预言的宇宙微波背景辐射。他们本想要使用一根大型通信天线进行射电天文学的实验研究,但因不断受到一个连续不断本底噪声的干扰,使得实

丁肇中:AMS太空实验结果颠覆人类对宇宙线认识

  当地时间12月8日,北京时间12月9日凌晨两点,诺贝尔物理奖获得者、美籍华人科学家丁肇中教授主持的阿尔法磁谱仪(AMS)项目在欧洲核子中心(CERN)发布了五年太空实验的结果,部分结果显示:AMS通过准确测量铍-硼流强比例,得到关于宇宙线在星系间传播时间的信息,测得银河系宇宙线的年龄大约是120

“旅行者1号”再立新功

   自1978年美国天文学家Vera Rubin通过旋转曲线第一次提供了暗物质存在的证据以来,在过去的40年间,天文学观测为暗物质的存在积累了丰富证据。然而,暗物质的本质仍晦暗不明,不过黑洞作为暗物质的一种选择,尽管有可能所占比例极小,但并未完全排除。  近日,在太空游荡了41年的“旅行者1号”无

在海拔4410米高地 张网捕捉太阳系外“信使”

  6月4日,在四川省甘孜州稻城县的海子山上,中科院高能物理所研究员曹臻站在一块花岗岩漂砾上,指着前方开阔平坦的山地说,大约4年后,这里将建成一座高海拔宇宙线观测站(LHAASO),它将是世界上覆盖能量范围最大的宇宙线探测设备。  LHAASO即将全面开工。  高能宇宙线 开启了解银河系的窗口  宇