傅里叶变换分光仪简介

用扫描迈克耳孙干涉仪对光谱进行分光测量的仪器。干涉仪臂上的可调平面镜M2可沿光轴方向作扫描运动,为 M2的位移值。这时, 探测器接收到的是一种调制信号F(x),它同入射光的光谱强度分布B(σ)之间的关系是:,式中σ 为波数,等于波长λ的倒数,F(0)为M1和M2之间光程差等于零时的出射光强度。[2F(x)-F(0)]称为干涉图,等于。这在数学上称为B(σ)的傅里叶变换,这种分光仪名称就是由此而来的。 迈克耳孙早在十九世纪末就提出这种分光仪的工作原理,但直到二十世纪六十年代,随着计算机技术的发展,能快速地进行傅里叶变换数学运算以后,傅里叶分光仪才得以实现。在观测过程中,探测器在平面镜M2的有限个扫描位置上取样,测得的信号输给电子计算机,并依次存储。M2完成一个扫描周期的运动后,计算机对干涉图[2F(x)-F(0)]进行傅里叶逆变换的数学运算,输出信号便正比于光谱的强度分布B(σ)。......阅读全文

傅里叶变换分光仪简介

  用扫描迈克耳孙干涉仪对光谱进行分光测量的仪器。干涉仪臂上的可调平面镜M2可沿光轴方向作扫描运动,为 M2的位移值。这时, 探测器接收到的是一种调制信号F(x),它同入射光的光谱强度分布B(σ)之间的关系是:,式中σ 为波数,等于波长λ的倒数,F(0)为M1和M2之间光程差等于零时的出射光强度。[

关于傅里叶变换分光仪的内容介绍

  式中σ 为波数,等于波长λ的倒数,F(0)为M1和M2之间光程差等于零时的出射光强度。[2F(x)-F(0)]称为干涉图,等于。这在数学上称为B(σ)的傅里叶变换,这种分光仪名称就是由此而来的。  迈克耳孙早在十九世纪末就提出这种分光仪的工作原理,但直到二十世纪六十年代,随着计算机技术的发展,能

关于傅里叶变换分光仪的应用介绍

  用扫描迈克耳孙干涉仪对光谱进行分光测量的仪器。在原理图中,干涉仪臂上的可调平面镜M2可沿光轴方向作扫描运动,为 M2的位移值。这时, 探测器接收到的是一种调制信号F(x),它同入射光的光谱强度分布B(σ)之间的关系是。  在天文学中,对大行星的红外观测获得许多重要的成果。与用红外检测器沿波长扫描

傅里叶变换分光仪的谱线轮廓的介绍

  傅里叶变换分光仪还用于可见光谱区,测量太阳光谱的谱线轮廓。应用于可见光波段的,是一种精度极高的光学仪器。这种仪器要求采用多种措施保证平面镜M2在长扫描距离(1~2米)内运动的平稳性,和取样间距的高精度(几埃),并需配备大容量、高速度电子计算机,才能完成傅里叶变换的数学运算。

傅里叶变换分光仪测量太阳光谱的谱线轮廓

    傅里叶变换分光仪还用于可见光谱区,测量太阳光谱的谱线轮廓。应用于可见光波段的,是一种精度极高的光学仪器。这种仪器要求采用多种措施保证平面镜M2在长扫描距离(1~2米)内运动的平稳性,和取样间距的高精度(几埃),并需配备大容量、高速度电子计算机,才能完成傅里叶变换的数学运算。

关于分光仪的内容简介

  分光仪又称分光计, 是用来准确测量光线偏折角度的仪器。分光仪利用各种原理可以将一束混合光分成多束纯光,一般用于光谱分析。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波

快速傅里叶变换的性能简介

  FFT的性能用取样点数和取样率来表征,例如用100KS/S的取样率对输入信号取样1024点,则最高输入频率是50KHz和分辨率是50Hz。如果取样点数为2048点,则分辨率提高到25Hz。由此可知,最高输人频率取决于取样率,分辨率取决于取样点数。FFT运算时间与取样,点数成对数关系,频谱分析仪需

傅里叶变换红外光谱仪简介

  傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。[1]它克服了色散型光谱

关于分光仪的详细介绍

  分光仪( Spectroscope)是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用分光仪可测量物体表面反射的光线,。阳光中的七色光是肉眼能分的部分(可见光),但若通过分光仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线

关于傅里叶变换红外光谱仪的简介

  傅里叶变换红外光谱仪主要由迈克尔逊干涉仪和计算机组成。迈克尔逊干涉仪的主要功能是使光源发 出的光分为两束后形成一定的光程差,再使之复合以产生干涉,所得到的干涉图函数包含了光源的全部频率 和强度信息。用计算机将干涉图函数进行傅里叶变换,就可计算出原来光源的强度按频率的分布。 [1]它克服了色散型光

关于脉冲傅里叶变换核磁共振仪的简介

  核磁共振仪按扫描方式不同可分为两大类———连续波核磁共振仪和脉冲傅里叶变换 核磁共振仪。脉冲傅里叶变换共振实验脉冲时间短,每次脉冲的时间间隔一般仅为几秒。许多在 连续波仪器上无法做到的测试可以在脉冲傅里叶变换共振仪上完成。  优点:脉冲傅里叶变换共振实验脉冲时间短,每次脉冲的时间间隔一般仅为几秒

傅里叶分光仪在红外波段观测中的广泛应用

    在天文学中,对大行星的红外观测获得许多重要的成果。与用红外检测器沿波长扫描的色散(棱镜、光栅)分光仪相比,信噪比可提高(N/8)1/2倍。此处N是傅里叶变换分光仪同时测量的光谱单元数。例如,在某些应用中,N可高达106,测量精度和灵敏度可以提高350倍。与色散分光仪相比,傅里叶分光仪还有其他

关于傅里叶变换的图像傅里叶变换介绍

  图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅里叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则

关于分光仪的基本信息介绍

  分光仪又称分光计, 是用来准确测量光线偏折角度的仪器。分光仪利用各种原理可以将一束混合光分成多束纯光,一般用于光谱分析。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波

实验室检验检测设备分光仪

光谱仪,又称分光仪,广泛为认知的为直读光谱仪。以光电倍增管等光探测器测量谱线不同波长位置强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两

傅里叶变换质谱法概述

  傅里叶变换质谱法(Fourier transform mass spectrometry,FTMS)是离子回旋共振波谱法(ion cyclotron resonance spectrometry,ICR)与现代计算机技术相结合的产物,因而又称傅里叶变换离子回旋共振质谱法(FTICR MS)。  

傅立叶变换红外光谱仪是基于什么原理进行分光的

傅立叶变换红外光谱仪是一种基于傅立叶变换原理的分光仪器。一、详细介绍傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶

傅立叶变换红外光谱仪是基于什么原理进行分光的

傅立叶变换红外光谱仪是一种基于傅立叶变换原理的分光仪器。一、详细介绍傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,简写为FTIR Spectrometer),简称为傅里叶红外光谱仪。它不同于色散型红外分光的原理,是基于对干涉后的红外光进行傅里叶

关于高精度微光分光仪的基本信息介绍

  高精度微光分光仪是一种用于地球科学领域的大气探测仪器,于2008年12月24日启用。  一、高精度微光分光仪的技术指标:  灵敏度:增强器增益的可调性(通过软件)使灵敏度具有多种选择(每个光电子1至80counts不等)。磷屏的选择有可能导致低灵敏度。   二、高精度微光分光仪的主要功能:  光

新型被动毫米波分光仪-悄悄对抗化学污染

美国能源部Argonne国家实验室的一项新的获奖发明能隐蔽的从非常远的距离检测化学烟流,有助于将来对抗化学污染甚至核武器恐怖袭击。这项技术还有很多其他用途,比如不用接触就可以检测环境污染来确认受害者的受损程度。 被动毫米波分光仪(PmmWS)是由Argonne科学家Sami Gopalsami,

傅里叶变换的定义和原理

傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。

傅里叶变换如何用于质谱仪

  目前利用傅立叶变换的质谱仪有三种,傅立叶变换磁质谱仪,傅立叶变换轨道阱质谱仪,傅立叶变换超导磁质谱仪,有ZL表明也可以做到傅立叶变换飞行时间质谱仪。傅立叶变换是建立在数学算法上的,利用规律性的电场或磁场的变化,加大带电粒子的区分度

傅里叶变换如何用于质谱仪

目前利用傅立叶变换的质谱仪有三种,傅立叶变换磁质谱仪,傅立叶变换轨道阱质谱仪,傅立叶变换超导磁质谱仪,有ZL表明也可以做到傅立叶变换飞行时间质谱仪。傅立叶变换是建立在数学算法上的,利用规律性的电场或磁场的变化,加大带电粒子的区分度

傅里叶变换质谱法的历史发展

  发展  最早的ICR MS可追溯到E.O.Lawrence's回旋。1950年,Sommer.Thomas和Hipple研制了第一台有实用价值的回旋质谱仪。而真正使离子回旋共振质谱仪发展史翻开崭新一页的事1974年Marshall和Comisarow把FT方法用于处理ICR数据。随后,傅

关于傅里叶变换的意义概述

  傅里叶变换是数字信号处理领域一种很重要的算法。要知道傅里叶变换算法的意义,首先要了解傅里叶原理的意义。傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅里叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅

傅里叶变换离子回旋共振质谱法

  傅里叶变换离子回旋共振质谱法也称作傅里叶变换质谱分析,这是一种根据给定磁场中的离子回旋频率来测量离子质荷比(m/z)的质谱分析方法。  彭宁离子阱(Penning Trap)中的离子被垂直于磁场的震荡电场激发出一个更大的回旋半径,这种激发作用同时也会导致离子的同相移动(形成离子束)。当回旋的离子

关于傅里叶变换的性质介绍

  1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子;  2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;  3、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以

拉曼光谱学简介

拉曼光谱学是用来研究晶格及分子的振动模式、旋转模式和在一系统里的其他低频模式的一种分光技术。拉曼散射为一非弹性散射,通常用来做激发的激光范围为可见光、近红外光或者在近紫外光范围附近。激光与系统声子做相互作用,导致最后光子能量增加或减少,而由这些能量的变化可得知声子模式。这和红外光吸收光谱的基本原理相

色谱傅里叶变换红外光谱联用

红外光谱在有机化合物的结构分析中有着很重要的作用,而色谱又是有机化合物分离纯化的最好方法,因此色谱与红外光谱的联用一直是有机分析化学家十分关注的问题。在傅里叶变换红外光谱出现以前,由于棱镜或光栅型红外光谱的扫描速度很慢,灵敏度也低,色谱与红外光谱在线联用时,往往只能采用停流的方法,即在需要检测的组分

简述傅里叶变换的相关信息介绍

  * 傅里叶变换属于谐波分析。  * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;  * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的