Antpedia LOGO WIKI资讯

揭示哺乳动物早期胚胎发育表观遗传的进化调控规律

在生命起始的时候,高度特化的精子和卵子结合形成全能性的受精卵。在这一过程中,表观遗传信息发生了广泛而剧烈的重编程。同时,一些表观遗传信息如基因印记会被选择性的保留下来。由于哺乳动物配子和早期胚胎材料的稀缺,关于表观遗传信息在配子向胚胎转变(parental-to-embryonic transition)过程中是如何遗传和重编程的研究长期进展缓慢。近年来,由于一些高灵敏微量细胞染色质分析技术的出现,研究人员得以在分子水平研究表观遗传信息在生命起始过程中是如何擦除、重建和遗传的。这些研究大部分是在模式动物尤其是小鼠中展开的。但是,在不同物种中,表观遗传信息的传递是否保守,以及不同物种中是否存在普适的表观遗传调控规律调控胚胎发育并不清楚。 为了回答这个问题,清华大学生命学院颉伟课题组、北京农学院郭勇课题组与中国科学院动物研究所李伟课题组紧密合作,利用一系列表观遗传的分析技术,包括STAR ChIP-seq、CUT&RU......阅读全文

斑马鱼之后,CRISPR再探哺乳动物胚胎发育史

Researchers have used gene-editing to track the cell-by-cell development of a mouse embryo.Credit: Agnieszka Jedrusik and Magdalena Zernicka-Goetz

揭示哺乳动物早期胚胎发育表观遗传的进化调控规律

  在生命起始的时候,高度特化的精子和卵子结合形成全能性的受精卵。在这一过程中,表观遗传信息发生了广泛而剧烈的重编程。同时,一些表观遗传信息如基因印记会被选择性的保留下来。由于哺乳动物配子和早期胚胎材料的稀缺,关于表观遗传信息在配子向胚胎转变(parental-to-embryonic transi

Science:受控的水力压裂让哺乳动物胚胎发育成形

  水力压裂(hydraulic fracturing)是一种最为常见的与页岩气开采相关的过程。在一项新的研究中,来自法国索邦大学居里研究所和法兰西学院生物跨学科研究中心的研究人员作出结论:自我压裂(self-fracking)是将胚胎(来自小鼠)从径向对称的细胞聚集体切换到双侧对称的囊胚(blas

Science:灵长类动物胚胎发育之谜

  原肠胚形成(gastrulation)是发育中的里程碑事件,它涉及早期胚胎发生中出现的一系列复杂的分子、物理和能量重塑转变。不同物种间的这种转变过程各不相同,导致地球上动物形态的多样性。由于技术和伦理上的限制,灵长类动物原肠胚形成的分子和细胞机制尚不清楚。缺乏处于原肠胚形成阶段的灵长类动物胚胎样

动物的早期胚胎发育及腔肠动物观察实验

实验方法原理1.  通过观察蛙和海星早期胚胎发育的各个时期,了解多细胞动物早期胚胎发育的一般过程,从而加深对多细胞动物起源的理解。2.  通过对水螅切片和薮枝螅、海月水母、海蜇、海葵的浸制标本的观察,了解腔肠动物门的主要特征。实验材料海星卵裂装片纵、横切片浸制标本仪器、耗材显微镜

动物的早期胚胎发育及腔肠动物观察实验

实验方法原理 通过观察蛙和海星早期胚胎发育的各个时期,了解多细胞动物早期胚胎发育的一般过程,从而加深对多细胞动物起源的理解。2. 通过对水螅切片和薮枝螅、海月水母、海蜇、海葵的浸制标本的观察,了解腔肠动物门的主要特征。实验材料 海星卵裂装片纵、横切片浸制标本仪器、耗材 显微镜载玻片盖玻片实验步骤 1

Science:揭开灵长类动物胚胎发育的“魔盒”

  目前我们并不清楚灵长类动物早期胚胎发育过程中所发生的分子和细胞事件,如今,来自中国和美国的科学家们通过联合研究开发了一种新方法,能在实验室中研究灵长类动物胚胎的生长过程,同时也能帮助研究人员首次观察到胚胎关键发育过程中的分子细节,相关研究刊登于国际杂志Science上。图片来源:Weizhi J

首都医大:miRNA调控大型哺乳动物牙齿发育

  MicroRNA(miRNA)在啮齿类动物牙齿发育过程中扮演着重要的调控角色,但我们对其在大型哺乳类动物的牙齿发育中的作用知之甚少。现在,首都医科大学副校长王松灵教授领衔的团队利用Seq-Array™(芯片与二代测序相结合策略)技术方法鉴定出小型猪在下乳牙发育过程中

科学家称过低发育效率阻碍哺乳动物克隆

  距离第一个克隆生命——“多莉”羊诞生已有15年,克隆人一直是伦理学划定的禁区,但与此同时,人们总能不断听到来自科学界的种种关于克隆人将会实现的声音。近日,美国哈佛大学医学院的遗传学家乔治·丘奇表示,自己能够利用克隆技术“复活”早在3.3万年前就已灭绝的尼安德特人。面对人类克隆,你

动物所合作研究揭示哺乳动物早期胚胎命运决定的新机理

  中国科学院动物研究所的合作团队结合数学建模以及哺乳动物早期胚胎单细胞转录组测序数据分析,对哺乳动物早期胚胎第一次谱系分化的起源问题提出了新的解释,研究工作发表于Development。  传统观点认为,哺乳动物早期胚胎的第一次细胞命运决定起始于桑葚胚阶段(16细胞期),此阶段的卵裂球首次在位置上