流动注射法测定硝酸盐氮的测定的干扰因素

干扰及消除试验了SO42-、PO43-、Cl-、Br-、I-、Ac-、HCO3-、CO32-、C2O42-、S2-、NO2-、K+、NH4+、Al3+、Ca2+、Mg2+、Zn2+、Cu2+、Pb2+、Fe2+、Fe3+对测定的干扰,其中S2-、I-明显干扰,Br-大于57倍,NO2-大于32倍,Cl-大于250倍时有干扰,其他均无干扰。其中NO2-的干扰可用加入少量氨基磺酸消除,Cl-、Br-、I- 、S2-的干扰可在试样中加入少量固体Ag2SO4粉末消除。......阅读全文

流动注射法测定硝酸盐氮的测定的干扰因素

干扰及消除试验了SO42-、PO43-、Cl-、Br-、I-、Ac-、HCO3-、CO32-、C2O42-、S2-、NO2-、K+、NH4+、Al3+、Ca2+、Mg2+、Zn2+、Cu2+、Pb2+、Fe2+、Fe3+对测定的干扰,其中S2-、I-明显干扰,Br-大于57倍,NO2-大于32倍,C

流动注射法测定硝酸盐氮的测定的方法测定范围

方法的适用范围本方法适用于地表水、饮用水、污水,电子、电镀、生化等一般工业废水中NO3--N生物测定。本方法的检出限为0.2 mg/LNO3--N。线性测量范为1.00~1000 mg/L NO3--N。

流动注射法测定硝酸盐氮的测定的方法原理

(1)测量流程:同电极流动注射分析法测定Cl-。(2)工作原理:试液与离子强度调节剂分别由蠕动泵引入系统,经过一个三通管混合后进入流通池,由流通池喷嘴口喷出,与固定安装在流通池内的离子选择性电极接触,该电极与固定在流通池内的参比电极即产生电动势,该电动势随试液中NO3--N浓度的变化遵守能斯特方程,

流动注射法测定硝酸盐氮的测定的操作步骤

操作步骤(1)实验准备首先将两根泵管连接好,推上压紧板,再将电极套入流通池的电极盖中,调节好离喷嘴口的距离,将电极接口与仪器连接好。接通电源,打开仪器开关,将套在泵管上的两根聚四氟乙烯管插入去离子水中。(2)校准曲线的绘制将一根聚四氟乙烯管插入离子强度调节剂中,另一根依次(从稀到浓)插入不同浓度的标

流动注射法测定硝酸盐氮的测定的注意事项

①使用前,旋下电极头,用滴管插入内充液室内,慢慢加入内充溶液至内充液室的4/5,再旋上电极头。②电极使用前,必须先活化。活化方法:将电极浸泡在10 mol/L NaNO3溶液中30 min以上。③测定过程中,如遇气泡聚积在电极表面,应去除,否则影响测定。④电极使用完毕后,应清洗到空白电位值,甩净内充

流动注射法测定硝酸盐氮的测定的仪器和试剂选择

仪器①电极流动注射分析仪;②硝酸根离子选择性电极;③217型双液接参比电极(外盐桥用饱和KCl琼脂封冻或用0.5 mol/L Na2SO4)。试剂①硝酸盐氮标准贮备液:称取6.070 g已在100~105 ℃烘干,恒重的优级纯硝酸钠(NaNO3)溶于水中,移入1000 ml容量瓶中,稀释至标线,摇匀

流动注射法测定硝酸盐氮的测定如何保证精准度

精密度和准确度测定了硝酸盐氮含量在3.92~25.0 mg/L之间的地表水、饮用水,电镀、生化、彩管厂废水,酸洗废水以及两种浓度水平的标准溶液和国家二级标样,相对标准偏差在2.0%~4.1%之间。对以上水样进行了两种不同浓度水平的加标试验,回收率在89%~100%之间。

紫外法测定硝酸盐氮

因为紫外法测定硝酸盐氮的原理是利用硝酸根离子在220nm波长处的吸收而定量测定硝酸盐氮。溶解的有机物在220nm处也会有吸收,而硝酸根离子在275nm处没有吸收。因此,在275nm处作另一次测量,以校正硝酸盐氮值。结果计算A校=A220-2A275式中A220——220nm波长测得吸光度;A275—

酚二磺酸光度法测定水中硝酸盐的干扰因素和测定范围

干扰水中含氯化物、亚硝酸盐、铵盐、有机物和碳酸盐时,可产生干扰。含此类物质时,应作适当的预处理。方法的适用范围本法适用于测定饮用水、地下水和清洁地表水中的硝酸盐氮。最低检出浓度为0.02 mg/L;测定上限为2.0 mg/L。

纳氏试剂光度法测定氨氮比例的干扰因素

脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质还可在酸性条件下加热以除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。

气相分子吸收光谱法测定氨氮的干扰因素

由于本法是将氨和铵盐氧化成亚硝酸盐进行测定的,故水样中所含亚硝酸盐,应事先测定出结果进行扣除。另外次溴酸钠氧化能力极强,水中有机胺也将全部或部分被氧化成亚硝酸盐,故水样含有机胺时,应根据需要进行蒸馏予以分离。

气相分子吸收光谱法测定亚硝酸盐含量的干扰因素

在含有0.2 μg亚硝酸盐氮的5ml 0.2 mol/L柠檬酸介质中,分别加入1000 μg K+、Na+、Mg2+、Cu2+、Pb2+ 、Zn2+、Ca2+、Fe3+、Ni+、Cd2+、Mn2+、Sn2+,500μg As3+、Hg2+、F-、Br-、I-及大量的NO3-均不干扰测定水样的颜色及小

离子色谱法测定亚硝酸盐的干扰及消除

干扰及消除任何与待测阴离子保留时间相同的物质均干扰测定。待测离子的浓度在同一数量级可以准确定量,淋洗位置相近的离子浓度相差太大,不能准确测定。当Br-和NO3-离子彼此间浓度相差10倍以上时不能定量。采用适当稀释或加入标准等方法可以达到定量的目的。高浓度的有机酸对测定有干找。水能形成负峰或使峰高降低

石墨炉原子吸收法测定硒含量的干扰因素

干扰废水中的共存离子和化合物在常见浓度下不干扰测定。当硒的浓度为0.08 mg/L时,锌(或镉、铋)、钙(或银)、镧、铁、钾、铜、钼、硅、钡、铝(或锑)、钠、镁、砷、铅、锰的浓度达7500 mg/L、6000 m/L、5000 mg/L、2750 m/L、2500 mg/L、2000 mg/L、10

石墨炉原子吸收法测定钒含量的干扰因素

干扰地表水中常见成分元素不产生干扰。废水中的共存离子和化合物在常见浓度下也不干扰测定,但当钒的浓度为1 mg/L,而铅、钼的浓度超过300 mg/L,铁的浓度超过200 mg/L,砷、锑、铋的浓度超过100 mg/L,硝酸的浓度超过6%时,将会抑制钒的吸收信号,使钒的测定结果偏低。

火焰原子吸收法测定样本锑含量的干扰因素

试液中存在的一般阴、阳离子不干扰锑的测定,试液中存在低于20%盐酸或硝酸也无影响,只有硫酸浓度大于2%,对锑的吸收信号有抑制作用。在波长217.6 nm测量锑,大量铜和铅有光谱干扰,使吸收信号增加。为此,可选择较小的光谱通带予以克服。铜的浓度小于20 mg/L,铅的浓度小于10 0mg/L没有干扰。

水样酸次氯酸盐光度法测定氨氮的方法原理和干扰因素

1.方法原理在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成蓝色化合物,在波长697 nm具最大吸收。2.干扰及消除氯铵在此条件下均被定量地测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。

电位滴定法测定样本钡含量的干扰因素

干扰因素锶离子含量超过钡含量2倍时,钙离子含量超过钡含量150倍时,对测定有干扰,使终点电位突跃不明显。锂、钾、铵离子含量超过钡含量50倍时,产生干扰。

分光光度法测定水质浊度的干扰因素

水样应无碎屑及易沉降的颗粒。器皿不清洁及水中溶解的空气泡会影响测定结果。如在680 nm波长下测定,天然水中存在的淡黄色、淡绿色无干扰。

气相色谱法测定磷元素含量的干扰因素

水样中的无机物、常见的有机磷农药(乐果、甲基对硫磷、马拉硫磷等)和其它有机化合物不干扰元素磷的测定。

冷原子吸收法测定样本中汞含量的干扰因素

碘离子浓度高于或等于3.8 mg/L时,明显影响高锰钾酸钾-过硫酸钾消解法的回收率与精密度。当阴离子洗涤剂浓度高于或等于0.1 mg/L时,采用溴酸钾-溴化钾消解法,汞的回收率小于67.7%。若有机物含量较高,规定的消解试剂最大用量不足以氧化样品中有机物时,则本法不适用。

燃烧氧化非分散红外吸收法测定TOC的测定范围、干扰因素

  测定范围  本方法适用于工业废水、生活污水及地表水中总有机碳的测定,测定浓度范围为0.5~100 mg/L,高浓度样品可进行稀释测定,检测下限为0.5 mg/L。  干扰  地表水中常见共存离子超过下列含量(mg/L),对测定有干扰,应作适当的前处理,以消除对测定的干扰影响。SO42 -400;

原子荧光法测定水样中砷含量的干扰因素

干扰及消除该方法存在的主要干扰元素是高含量的Cu2+、Co2+、Ni2+、Ag2+、Hg2+以及形成氢化物元素之间的互相影响等。一般的水样中,这些元素的含量在本方法的测定条件下,不会产生干扰。其它常见的阴阳离子没有干扰。

火焰原子吸收光度法测定样本镍含量的干扰因素

测定5 μg/ml镍时,下列离子均无明显干扰:硫酸根5000 μg/ml;钙(Ⅱ)、镁(Ⅱ)、铜(Ⅱ)、铬(Ⅲ)、锰(Ⅱ)、铁(Ⅲ)、镉(Ⅱ)、钾(I)、硅酸根、氟离子各1000 μg/ml;铅(Ⅱ)、锌Ⅱ)、磷酸根各500 μg/ml;银(I)、锡(Ⅱ)、锑(III)各100 μg/ml。使用23

原子吸收法测定土壤和沉积物汞的测定方法干扰因素

千扰及消除(1)在汞污染的环境中操作,仪器的背景值会明显地增加。(2)当一个高浓度汞样品(大于等于400ng)在一个低浓度(小于等于25ng)汞样品前进行分析时,将会产生记忆效应。通常批量分析样品时,先分析低浓度样品,否则在分析高浓度样品后,分析3%硝酸溶液,当其分析结果低于0.10ng时,再进行下

连续流动分析法测定地表水中总氮的研究

  总氮(total nitrogen)是指在国家(行业)标准规定的条件下,能测定的地表水、地下水、工业废水和生活污水中溶解态及悬浮物中氮的总和,包括亚硝酸盐氮、硝酸盐氮、无机铵盐、溶解态氨及大部分有含氮化合物中的氮。   水中的总氮含量是衡量水质的重要指标之一。其测定有助于评价水体被污染和自净状况

紫外消解流动注射光度法测定海水养殖废水中总氮和总磷

方案优势       在盐度为35,进样时间为70 s,清洗时间为90 s 的条件下,总氮和总磷的检出限分别为0.050mg/L和0.020 mg/L,测定结果的相对标准偏差分别为1.15%,0.60%(n=6),加标回收率分别为98.7%~101.2% 和98.6%~102.5%。

便携式浊度计法测定水质浊度的干扰因素分析

干扰及消除①当出现漂浮物和沉淀物时,读数将不准确。②气泡和震动将会破坏样品的表面,得出错误的结论。③有划痕或沾污的比色都会影响测定结果。

间接火焰原子吸收法测定样本铝含量的干扰因素介绍

K+、Na+(各10 mg),Ca2+、Mg2+、Fe2+(各200 μg),Cr3+(125 μg),Zn2+、Mn2+、Mo6+(各50 μg),PO43-、Cl-、NO3-、SO42-(各1 mg)不干扰20 μgAl的测定。Cr6+超过125 μg稍有干扰,Cu2+、Ni2+干扰严重,但在加

双缩脲法测定蛋白质含量的干扰因素有哪些

双缩脲法灵敏度较低1~20mg,实验时间20~30min,干扰物质有硫酸铵,tris,部分氨基酸。主要用于快速测定,但是不太灵敏,不同的蛋白质显色相似。可以试试lowry法