沉水植物对水环境适应性研究中取得的系列进展
沉水环境和陆生环境在光照、水的可利用性和无机碳的形式及浓度上有较大差异,这些环境参数与植物光合作用及生长发育密切相关。面临水陆环境的差异,水生植物的形态结构和生理生化都产生了适应。 中国科学院武汉植物园水生植物生物学学科组研究团队选取眼子菜科竹叶眼子菜(Potamogeton wrightii)为研究材料,针对该水生植物的解剖结构、光合生理的响应,利用转录组测序技术,进一步从分子遗传水平综合阐明了P. wrightii 对两种不同生境的适应机制。研究表明,相较于沉水叶,P. wrightii的气生叶更厚,有较多的角质和蜡质,气孔发达,对强光的耐受性更强,光化学效率更高。沉水叶有更强的HCO3-获取能力,并合成更多光合色素。分别对气生叶和沉水叶进行转录组测序和比较分析,研究发现众多差异表达基因富集在角质和蜡生物合成、光合作用-天线蛋白、光合作用途径等相关的代谢通路,进一步阐明了该物种对水生和陆地两种不同生境的分子适应机制(图......阅读全文
沉水植物对水环境适应性研究取得系列进展
沉水环境和陆生环境在光照、水的可利用性和无机碳的形式及浓度上有较大差异,这些环境参数与植物光合作用及生长发育密切相关。面临水陆环境的差异,水生植物的形态结构和生理生化都产生了适应。 中国科学院武汉植物园水生植物生物学学科组研究团队选取眼子菜科竹叶眼子菜(Potamogeton wrightii
沉水植物及藻菌群落对纳塑料胁迫响应研究获进展
原文地址:http://news.sciencenet.cn/htmlnews/2023/12/515024.shtm近日,广东省科学院生态环境与土壤研究所研究员贺斌团队在沉水植物及藻菌群落对纳塑料胁迫的响应机制研究方面取得新进展。相关成果先后发表于Water Research和Journal of
底泥板结对洞庭湖区的沉水植物有何影响?
气候变化和人类活动加剧(如大坝建设)在一定程度上改变了湖泊固有的水文节律,使湖泊成为世界上最受威胁的生态系统之一。沉水植物作为湖泊中主要的初级生产者,对维持湖泊生态系统的稳定起重要调节作用。2010年来,洞庭湖沉水植被退化严重,部分区域甚至消失,对湖区生态环境健康构成较大威胁。自三峡大坝运行后,洞庭
水生所在杭州西湖生态改良和沉水植物研究中取得进展
杭州西湖是我国列入《世界遗产名录》中的湖泊类文化遗产,也是我国城市景观湖泊的典型代表,位于太湖流域杭嘉湖片区东部,为封闭式城中浅水湖泊。“水光潋滟晴方好,山色空蒙雨亦奇,欲把西湖比西子,淡妆浓抹总相宜”,这是苏东坡对西湖的描述,也是国人对西湖的印象,但随着气候环境变化,城市的扩张,西湖的生态危机
武汉植物园沉水植物多重元素化学计量学研究中获进展
生态化学计量学是综合生物学、化学和物理学的基本原理,利用生态过程中多重化学元素的平衡关系,研究多重化学元素在生态系统过程中的耦合关系的一种综合方法,其核心问题是揭示生物体元素组成的差异对生态系统结构与功能的影响,是目前研究的热点问题。 植物生长至少需要16种元素,但目前的元素化学计量学研究基本
沉水植物对水环境适应性研究中取得的系列进展
沉水环境和陆生环境在光照、水的可利用性和无机碳的形式及浓度上有较大差异,这些环境参数与植物光合作用及生长发育密切相关。面临水陆环境的差异,水生植物的形态结构和生理生化都产生了适应。 中国科学院武汉植物园水生植物生物学学科组研究团队选取眼子菜科竹叶眼子菜(Potamogeton wrightii
武汉植物园揭示沉水植物对富营养化湖泊重金属超富集能力
富营养化湖泊不仅仅承受着氮磷营养盐过量输入和蓝藻水华频繁暴发的胁迫,重金属污染也是不容忽视的问题。从过去单纯的自然输入到现在的自然输入和人为排放双重影响,重金属源源不断的汇入并长期沉积在湖泊底泥中,给人类健康和生态安全带来了严重威胁。利用水生植物从富营养化湖泊中移除重金属是非常有效的手段,然而,
武汉植物园在沉水植物多重元素的化学计量学研究中获进展
生态化学计量学是综合生物学、化学和物理学的基本原理,利用生态过程中多重化学元素的平衡关系,研究多重化学元素在生态系统过程中的耦合关系的一种综合方法,其核心问题是揭示生物体元素组成的差异对生态系统结构与功能的影响,是目前研究的热点问题。 植物生长至少需要16种元素,但目前的元素化学计量学研究基本
研究揭示沉水植物缓解NH4N脉冲的关键盖度阈值
全球气候变化导致极端降雨事件频发,促使大量营养物质以短期脉冲形式随雨水或径流汇入水体,引发藻类暴发等系列生态问题。尽管脉冲式和持续式营养输入均可促进藻类暴发,使水质恶化,但在脉冲式输入情景下,生物与非生物指标稳定性普遍更差,且高浓度的铵氮对水生动植物具有毒性胁迫作用,因而铵氮脉冲式输入或进一步加剧浅
沉水曝气机如何增加溶解氧
沉水曝气机如何增加溶解氧:沉水曝气机首要是进行混合曝气,使活性污泥处于良好状况,活性污泥与活性污泥接触。此外,它还可认为好氧微生物供给氧气。 沉水曝气机是一种用于污水处理厂的设备。这是在曝气池的首要机械设备。其首要功用是在培养基中起到良好的作用。而该设备也使介质在曝气池中不敷,介质的输
水生植物光合作用
1、水生植物有沉水植物、浮水植物和挺水植物.后两者通过空气中的叶子吸收二氧化碳进行光合作用.2、沉水植物能吸收溶解在水中的二氧化碳进行光合作用.3、碳酸会有一个分解合成平衡.碳酸—水+二氧化碳,当水中的二氧化碳浓度下降时,平衡向右移动,释放二氧化碳.
植物群体光合作用测量
光合作用的测量已经进入“群体(冠层)测量”的时代,单个叶片的测量已经远远不能满足实际需求。“群体(冠层)测量”+“自动监测”才是光合作用测量的发展趋势。“群体叶绿素荧光”+“多通道群体气体交换”组成了完美的群体光合作用测量方案。光合作用是植物最重要的代谢途径之一,被称为地球上最重要的化学反应。对植物
光合作用测定仪测定植物光合作用
在农业领域,随着科技的发展,农业仪器的种类和数量也在不断增加。而这些农业仪器按照应用领域的不同又分为了土壤仪器、种子仪器、植物生理仪器、农业气象 仪器、植保仪器等。而我们知道作物生长,绿色植物是通过光合作用自身合成有机物的,它最重要的一个生理活动就是光合作用,那么农业领域是否有专门测定植
光合作用测定仪测定植物光合作用
在农业领域,随着科技的发展,农业仪器的种类和数量也在不断增加。而这些农业仪器按照应用领域的不同又分为了土壤仪器、种子仪器、植物生理仪器、农业气象 仪器、植保仪器等。而我们知道作物生长,绿色植物是通过光合作用自身合成有机物的,它最重要的一个生理活动就是光合作用,那么农业领域是否有专门测定植物 光合
植物光合作用测量系统概述
随着植物光合作用研究的深入和现代光合测定 系统的推广 ,越来越多的植物学科如农学、林学 、植物生理学 、植物生态学 、园艺学和遗传学 的研究均涉及到叶片光合作用的测定 。而净光合速率是衡量绿色植物光合能力大小的一个重要指标 。 植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合
植物光合作用测定仪
1、多功能 同时测定光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度和水分利用效率,以及二氧化碳浓度、相对湿度、光合有效辐射和空气温度、叶片温度十项指标 2、稳定性 加入了温度调节的双波长红外二氧化碳分析器,二氧化碳测量精度不受温度变化影响,而且具有稳定、精度高,反映灵敏等特点,1秒钟之内就
植物光合作用测定系统简介
植物光合作用测定系统是一种用于地球科学领域的分析仪器,于2015年11月02日启用。 技术指标 大小:40.6L x 57.2W x 21.1H cm;4个LED指示器;5个7-segment LED显示器;多路器覆盖区域:多路器到测量室最大半径15.0m,测量圆周的最大直径30.0m;。
碳四植物光合作用特点
在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮。这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶
光合作用测定仪测定哪些植物光合作用指标
植物的生长离不开光合作用,光合作用为植物生长提供来了所需的能量物质,而在植物生理研究过程中通过光合作用测定仪检测各项因素计算光合作用的各校指标以此来研究植物的生理特性,为植物生产提供高质量的服务。光合作用是植物生长的重要生理过程,植物的光合作用指的是绿色植物在光的照射下,经过一些列的反应将水和二氧化
光合作用检测仪如何测定植物光合作用?
研究植物的光合作用效果,需要对光合速率、光和效率以及光能利用率进行测定。光合速率指植物叶面积吸收二氧化碳的速率,光合效率指通过光合作用制造的有机物所含能量与吸收光能的比值,光能利用率指通过植物光合作用积累有机物所含能量占日光能量的比率。绿色植物通过光合作用可自身合成有机物,进行能量的转换,光合作用是
植物光合作用测定仪概述
光合作用测定仪可以测定气体CO2浓度、空气温湿度,植物叶片温度,光强,气体流量等要素,并计算出植物的光合(呼吸)速率、蒸腾速率、细胞间CO2浓度和气孔导度四大光合作用指标,在生物、农学、园艺、林业、昆虫、微生物、动物等许多专业的实验课程中有广泛的利用前景. HED-GH20光合作用测定仪测量项
植物光合作用仪的功能简述
主要功能 主要用于从事植物叶片光合作用、蒸腾作用、呼吸作用等相关研究,测量参数包括CO2浓度、H2O浓度、空气温度、叶片温度、相对湿度、蒸汽压亏缺、露点温度、大气压、内置光强、外置光强、净光合速率、蒸腾速率、胞间CO2浓度、气孔导度、Ci/Ca等。
植物光合作用测试仪概述
光合作用在实际进行过程中还会带动着自然界中的其他物质实现循环,为自然界的稳定与平衡提供助力。但是,影响光合作用的因素有多种,且一旦其中的某一关键因素发生改变,则将可能对光合作用造成较大的影响。 FT-GH30植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合有效辐射,细胞间CO
植物光合作用测量系统的应用
随着植物光合作用研究的深入和现代光合测定 系统的推广 ,越来越多的植物学科如农学、林学 、植物生理学 、植物生态学 、园艺学和遗传学 的研究均涉及到叶片光合作用的测定 。而净光合速率是衡量绿色植物光合能力大小的一个重要指标 。 植物光合测量系统可以测定气体CO2浓度、空气温湿度,叶片温度,光合
碳四植物光合作用的特点
在C4植物叶肉细胞的叶绿体中,在有关酶的催化作用下,一个CO2被一个叫做磷酸烯醇式丙酮酸的C3(英文缩写符号是PEP)固定,形成一个C4。C4进入维管束鞘细胞的叶绿体中,释放出一个CO2,并且形成一个含有三个碳原子的有机酸——丙酮。这种能够固定CO2的酶,叫做磷酸烯醇式丙酮酸羧化酶,简称PEP羧化酶
光合作用和植物生长的关系
植物光合作用测定仪是研究光合速率的重要仪器。它是使用电脑计算和使用二氧化碳的分析仪器和叶室之中的通信功能,从而接受各个所接收到的信息,采集到的数据,用来共同储存或者共同进行计算。计算使用二氧化碳吸收法进行计算,二氧化碳吸收法因为它的灵敏度高,原理得到了大家的认可,并且可以保证对叶片不进行破坏,
红蓝光植物生长箱模拟植物光合作用的意义
红蓝光植物生长箱光合作用的重要意义:光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。光合作用的意义可以概括为以下几个方面: 一、制造有机物。绿色植物通过光合作用制造有机物的数量是非常巨大的。据估计,地球
植物光合作用检测仪:光合作用的重要性
植物通过光合作用把光能转化为自身需要的有机化合物,以促进自身的生长和发展。对农业来说,农作物也是植物,也会进行光合作用,而且农作物在生长初期,成熟期以及开花结果的时期,光合作用的结果都是不同的,如果我们能根据光合作用的结果,知道农作物在不同的生长时间需要什么样的条件能更好的促进光合作用的发展,这
光合作用仪——解密光合作用对植物自身有什么好处?
光合作用检测仪探究光合作用对作物的影响,光合作用是植物特有的生理过程,通过植物进行光合作用,可以将太阳能转化为化学能,储存在有机化合物中,为作物提供物质和能量。光合作用还可以调节空气中的氧气和CO₂平衡,使大气始终保持充足的氧含量供人体和植物吸收利用。光合作用直接或简接的影响着作物的生产效果,因此对
植物光合作用检测仪:光合作用的重要性
植物通过光合作用把光能转化为自身需要的有机化合物,以促进自身的生长和发展。对农业来说,农作物也是植物,也会进行光合作用,而且农作物在生长初期,成熟期以及开花结果的时期,光合作用的结果都是不同的,如果我们能根据光合作用的结果,知道农作物在不同的生长时间需要什么样的条件能更好的促进光合作用的发展,这