afm样品制备过程中,需要考虑哪些因素
afm样品制备过程中,需要考虑哪些因素教学设计需要考虑的因素很多,但基本要素有三:文本、学生和教学环节。文本是教与学的基本对象,必须扎扎实实落实;学生是学习的主体,他们的学习状态、学习心理以及原有经验都对学习产生影响;教学环节是将教育理念变为可以触摸的教学现象和可以操作的教学行为的中介桥梁。 一、激发学生的学习兴趣,培养学生自主学习的意识和习惯,引导学生掌握语文学习的方法,为学生创设有利于自主、合作、探究学习的环境 学生学习积极性指在课堂教学中,学生有浓厚的兴趣,主动、自觉地进行学习内容的探索。学生的学习积极性越高,课堂教学效率就越高。美国哈佛大学心理学家詹姆士曾用实验证明,通过激发兴趣,人的积极性甚至可以增加3~4倍。有人推出了这样一个描绘性公式:学生的学习成绩=能力×兴趣。苏霍姆林斯基说过:"在每一个年轻的心灵里,存放着求知好学、渴望知识的'火药'。就看你能不能点燃这'火药'。&......阅读全文
AFM的接触模式
接触模式 在接触模式中,针尖始终与样品保持轻微接触,以恒高或恒力的模式进行扫描。扫描过程中,针尖在样品表面滑动。通常情况下,接触模式都可以产生稳定的、高分辨率的图像。 在接触模式中,如果扫描软样品的时候,样品表面由于和针尖直接接触,有可能造成样品的损伤。如果为了保护样品,在扫描过程中将样品和
AFM的Contact-模式
Contact 模式a)点击实验方案选择图标 ,打开实验方案选择;b)选择实验具体模式,Contact Mode;c)选择实验环境,Air;d)进入实验界面;e)根据上面提到的步骤,调整激光,并将Head靠近样品表面以看清样品;f)点击“Check Parameters”图标,进入实验参数设置;g)
多频AFM-技术
多频AFM 技术多频AFM(multifrequency AFM,MF-AFM)技术,简单来说就是微悬臂在多个频率下振动,并用来探测样品性质的一大类AFM技术,包括频带激励(band excitation)、双频追踪(dual resonance frequency tracking,DRFT)、边
SEM-和AFM对比
SEM 和AFM 是两种类型的显微镜,它们最根本的区别在于它们操作的环境不同。SEM 需要真空环境中进行,而AFM 是在空气中或液体环境中操作。环境问题有时对解决具体样品显得尤为重要。首先,我们经常遇到的是像生物材料这一类含水试样的研究问题。这两种技术通过不同的方法互为补偿,SEM 需要环境室,而A
AFM基本组成
AFM基本组成原子力显微镜是一种扫描探针显微镜,它是IBM公司Gerd Binning和斯坦福大学的Quate在1986年研发的,主要通过小探针与表面之间相互作用力的大小来获得表面信息。在一般的AFM系统中,主要由三部分组成:力传感部分、位置检测部分、反馈系统,其中力传感部分是AFM的核心部分,目前
AFM的Tapping-模式
Tapping 模式a)点击实验方案选择图标,打开界面;b)选择实验具体模式,Tapping Modee;c)选择实验环境Air进入实验界面;d)根据上面提到的步骤,调整激光,并将Head靠近样品表面以看清样品;e)点击 “Check Parameters” 图标;f) 设定以下扫描参数:Scan
AFM的工作原理
AFM的工作原理 AFM的基本原理与STM类似,在AFM中,使用对微弱力非常敏感的弹性悬臂上的针尖对样品表面作光栅式扫描。当针尖和样品表面的距离非常接近时,针尖尖端的原子与样品表面的原子之间存在极微弱的作用力(10-12~10-6N),此时,微悬臂就会发生微小的弹性形变。针尖与样品之间的力F与微悬
qPlus-型AFM-技术
qPlus 型AFM 技术qPlus 型AFM技术是使用石英音叉型力传感器代替传统的硅悬臂传感器,其中石英音叉的一个臂固定在基座上,而另一个自由悬臂和固定在其顶端的探针在压电陶瓷激励下以设定的恒定振幅振动,通过压电效应检测悬臂振动信号,具有恒频率偏移和恒针尖高度两种扫描成像模式。qPlus 型AF
AFM力曲线测试
力曲线测试 AFM除了形貌测量之外,还能测量力对探针-样品间距离的关系曲线Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。这个技术可以用来测量探针尖和样品表面间的排斥力或长程吸引力,揭示定域的化学和机械性质,像粘附力和弹力,甚至吸附分子层的厚度。如果将探针用特定分子或基团修饰,利用
如何激光检测原子力显微镜/AFM/AFM探针工作
二极管激光器发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检
AFM的位置检测部分
位置检测部分在原子力显微镜/AFM的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。
AFMRaman-联用技术
什么是近场光学?物体表面的场分布可以划分为两个区域,距离物体表面仅仅几个K的区域称为近场,近场光学则是研究距离物体表面一个波长范围的光学现象;从近场区域外至无穷远称为远场区域,通常观察工具如显微镜等各种光学镜头均处于远场范围。近场光学显微镜突破常规光学显微镜受到的衍射极限,在超高光谱分辨率下进行纳
AFM的-显微操作
显微操作 通过在纳米级水平调控探针的位置和施加力,AFM可以实现对生物分子进行物理操作如切割生物结构,转移分子至特定位置。在一定的范围调整施加力,AFM在成像的同时即可对样品进行操作。施加力的范围主要由悬臂的力学常数和探针粗细决定。与标准显维切割技术相比,AFM对目标区域切割、提取等操作具有更准
AFM的力检测部分
力检测部分在原子力显微镜/AFM的系统中,所要检测的力是原子与原子之间的范德华力。所以在本系统中是使用微小悬臂()来检测原子之间力的变化量。微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有
afm的基本工作原理
异步:定子绕组产生旋转磁场切割转子绕组产生感应电势、感应电流,电流产生电磁转矩驱动转子旋转。 同步:定子绕组产生旋转磁场;转子绕组通直流电产生直流磁场;两个磁场异性相吸,转子被旋转磁场拉动旋转。
AFM微影操控术
微影操控术(Nanolithography and Nanoma nipulation)Lithography(微影) 及ma nipulation (操控术)是目前相当热门的研究题目。多年以来Lithography 应用力量及电流方式,已可在材料表面刻出或长出不同尺寸纳米图案。目前研究上是针对(1
afm的基本工作原理
异步:定子绕组产生旋转磁场切割转子绕组产生感应电势、感应电流,电流产生电磁转矩驱动转子旋转。 同步:定子绕组产生旋转磁场;转子绕组通直流电产生直流磁场;两个磁场异性相吸,转子被旋转磁场拉动旋转。
AFM成膜机理研究
成膜机理研究高分子膜结构与相分离机理紧密相关,尤其是非晶形聚合物,相分离过程对膜的表面形态和结构影响极大。AFM 对膜表面形态与结构的成像与分析,对于膜制备过程中的成膜机理研究也带来了极大的帮助。AFM 在膜技术方面显示了强大的应用能力。无论在空气中或是液体环境中,AFM无需对膜进行任何可能破坏表面
AFM对沥青进行成像
为了确定沥青微观结构的相位和相位图的形貌,对每种沥青都进行了成像,相位图大小为25um×25um。通过对比不同时刻的AFM图,就能够分析沥青变形情况。 如前所述,图片的色度并不表示沥青表面形貌,只是材料特性和结构变化引起的。3种沥青都有2种相位。与AB和AD沥青不同的是,尽管多次尝试,仍然没有获得
AFM偏振光、干涉
偏振光、干涉光是一种电磁波,而电磁波是一种横波,只有横波才有偏振现象。其定义为电矢量相对于传播方向以一固定方式震动的光,图1-4为偏振光示意图。光的偏振现象可以借助于实验装置进行检测。取两块相同的偏振片A、B,将自然光先通过第一块偏振片A,此时自然光也变成为偏振光,但因为人眼无法辨别所以就需要第二块
AFM的功能和应用
AFM的功能和应用1 材料表面形貌测试AFM在水平方向具有0.1-0.2nm的高分辨率,在垂直方向的分辨率约为0.01nm。AFM对表面整体图像进行分析可得到样品表面的粗糙度、颗粒度、平均梯度、孔结构和孔径分布等参数,还可以对测试的结果进行三维模拟,得到更加直观的3D图像。 图2 TiO2
AFM纳米碳管探针
纳米碳管探针 由于探针针尖的尖锐程度决定影像的分辨率,愈细的针尖相对可得到更高的分辨率,因此具有纳米尺寸碳管探针,是目前探针材料明日之星。纳米碳管(carbon nanotube)是由许多五碳环及六碳环所构成的空心圆柱体,因为纳米碳管具有优异的电性、弹性与轫度, 很适合作为原子力显微镜的探针针
AFm-是什么意思
AFM,是指原子力显微镜。它是继扫描隧道显微镜之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵,现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为
AFM的测试机巧
下针:在选好模式下针前,务必找到样品表面,调好焦距。扫描范围先设置为0,当针尖接触到样品表面后,再扩大扫描范围,保护下针时破坏针尖。扫图:为了得到好的图象,须调好trace和retrace,一般来说调电压效果会好一些。探针在多次使用后或样品表面比较粗糙,扫描范围太小时,trace和retrace重合
AFM样品的预处理
样品的预处理:在显微镜下看样品表面是否干净,平整,如果有污染或不平整,务必重新制样。虽然针尖能测试的有效高度为6微米,水平范围100微米。但事实上,水平和高度方面任接近何一个极限,所测得的图象效果将很差,且针尖很容易破坏和磨损。