中科院开发基于内源CRISPR系统植物病原菌基因组编辑方法
高效便捷的基因组操纵技术可推动病原菌致病机理的研究。水稻是世界上主要的粮食作物,由水稻白叶枯菌(Xanthomonas oryzae pv. oryzae,Xoo)引起的水稻白叶枯病是威胁水稻生产的主要病害之一。近日,中国科学院微生物研究所邱金龙团队利用水稻白叶枯菌内源CRISPR-Cas系统,建立了高效的基因组编辑方法,实现了对白叶枯菌的精准遗传修饰,相关研究成果发表在Molecular Plant Pathology杂志上。水稻白叶枯菌基因组中存在唯一一个CRISPR-Cas系统,根据其特征它属于I-C型。RNA-Seq的实验数据证实该CRISPR-Cas系统重要组分的编码基因在白叶枯菌中被转录,表明其可能具有生物学功能。通过生物信息分析并结合质粒干扰实验,研究人员鉴定了该CRISPR-Cas系统识别的PAM(protospacer adjacent motif)为5’-TTN-3’和5’-CTC-3’。......阅读全文
中科院开发基于内源CRISPR系统植物病原菌基因组编辑方法
高效便捷的基因组操纵技术可推动病原菌致病机理的研究。水稻是世界上主要的粮食作物,由水稻白叶枯菌(Xanthomonas oryzae pv. oryzae,Xoo)引起的水稻白叶枯病是威胁水稻生产的主要病害之一。近日,中国科学院微生物研究所邱金龙团队利用水稻白叶枯菌内源CRISPR-Cas系统,建立
Cell-Reports:基于内源性IF型CRISPR的高效便捷基因编辑系统
直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子
清华百人计划发表CRISPR新成果
CRISPR/Cas已成为强有力的基因组编辑技术,并已成功地应用于 许多生物,其中包括几个植物物种。然而,在植物中,基因组编辑试剂载体的传递仍然是一个挑战。最近,来自清华大学和中科院微生物研究所的研究人员,在 Nature子刊《Scientific Reports》发表的一项研究中,报道了一个基
临床多重耐药菌基因组编辑研究取得进展
直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子
基因组编辑调控植物内源基因翻译效率的实验流程
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显着提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关成果
基因组编辑调控植物内源基因翻译效率实验流程发布
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显著提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关
临床多重耐药菌基因组编辑研究取得进展
直接在临床分离的多重耐药菌中进行功能基因组学研究是解析耐药机制以及开发抗耐药策略最直接有效的方法。然而,由于缺乏能在临床耐药菌中直接进行高效基因编辑的工具,目前耐药机制仍主要是采用组学分析加在模式菌中的异源验证进行研究。这种脱离了临床耐药菌本身遗传背景的研究策略,往往忽略了遗传背景本身对耐药因子
遗传发育所利用CRISPRCas系统对植物进行定点基因组编辑
CRISPR-Cas系统是继锌指核酸酶(ZFNs)和TALEN核酸酶之后的另一个可精确定点编辑基因组DNA的新技术,具有设计构建简单快速等优点。目前已在人类细胞系、斑马鱼、小鼠、果蝇和酵母等多个物种中利用,但CRISPR-Cas系统能否在植物中使用尚无报道。 中国科学院遗传与发育生物学研究
中美科学家联合研究构建植物CRISPRCas12b基因组编辑系统
2020年03月09日,美国马里兰大学Yiping Qi博士及电子科技大学张勇教授课题组合作于《Nature Plants》发表了题名《CRISPR-Cas12b enables efficient plant genome engineering》的研究论文。该研究针对植物(水稻)基因组结构及
基因组编辑调控植物内源基因翻译效率的实验流程公布
上游开放阅读框uORF广泛存在于动植物基因的5’非翻译区,通常能够抑制下游主开放阅读框pORF的翻译。中国科学院遗传与发育生物学研究所高彩霞研究组率先利用CRISPR/Cas9技术对uORF进行编辑,发现能够显着提高目标基因的翻译效率,建立了利用基因组编辑调控内源基因蛋白质翻译效率的新方法,相关
新CRISPR系统为基因组编辑带来了希望
原文地址:http://news.sciencenet.cn/htmlnews/2023/11/513047.shtmCRISPR-Cas9最著名的功能是作为编辑DNA的实验室工具,但它的自然功能是作为免疫系统的一部分,帮助某些微生物对抗病毒。 ?CRISPR-Cas9系统(如图)用于发
将CRISPRCas9在水稻中的基因组编辑效率提高37倍
来自中国水稻研究所,中科院遗传与发育生物学研究所的研究人员发表了题为“Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice”的文章,通过优化sgRNA的结构以及使用水稻内源性强启动子来驱动VQR变体
华中农大:利用I型及III型CRISPRCas系统实现基因组编辑
CRISPR-Cas系统广泛存在于细菌和古细菌中,近年来科学家们针对它们的分子机制开展研究促使开发出了基于II型系统的一些基因编辑技术(延伸阅读:中科院Cell发表CRISPR-Cas研究新成果 )。然而,却未有研究报道利用I型及III型系统来实现基因组编辑。 来自华中农业大学的研究人员报告称
上海生科院利用双生病毒载体系统实现CRISPR/Cas9
3月19日,《分子植物》(Molecular Plant)杂志在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心朱健康研究组题为Gene targeting by homology-directed repair in rice using a geminivirus-based CR
科学家在植物中实现超长基因片段高效精准无赘敲入
5月17日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院上海植物逆境生物学研究中心朱健康研究组题为CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transfo
经5年攻关,朱健康研究组在CRISPR领域取得重大进展,
2018年5月17日,朱健康研究组在Nature Communications在线发表了题为“CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation”的研究论文,该论文报道了拟南芥中基因
科学家创建简单高效棉花内源基因编辑筛选方法
近日,中国农业科学院棉花研究所棉花抗逆鉴定课题组创建了一种简单高效的耐盐相关内源基因编辑突变体筛选方法,应用CRISPR/Cas9系统精确有效地编辑棉花的两个耐盐相关的内源基因,为棉花的基因功能研究和分子育种提供了新思路。相关论文在线发表于《科学报告》。 CRISPR/Cas9来自微生物的
中科院明星学者发表CRISPR重要成果
CRISPR/Cas9是精确改写基因组的便捷工具。不过,在难转化的植物中进行CRISPR/Cas9基因组编辑在技术上还有一定的挑战,往往会产生令人担忧的转基因中 间产物。中科院遗传与发育生物学研究所的科学家们解决了这个问题。八月二十五日他们在Nature Communications杂志上发表文
张锋Cell:新一代CRISPR基因组编辑系统
在发表于《细胞》(Cell)杂志上的一项研究中,哈佛-麻省理工Broad研究的张锋(Feng Zhang)及其同事们报告称发现了一种不同的CRISPR系统,其有潜力实现更简单、更精确的基因组工程操作。他们描述了这一新系统一些出乎意外的生物学特征,证实可以操控它来编辑人类细胞基因组。 人类基因组
如何关闭CRISPR基因组编辑系统中的Cas9
CRISPR/Cas9技术正在如火如荼地发展。形形色色的Cas9变体被开发出,用于基因组编辑,激活和抑制基因表达,以及其他。不过,似乎还少了些什么,Cas9的活性一旦开启就无法关闭。人们担心,Cas9在细胞内停留的时间越长,脱靶编辑的可能性也越大。因此,Cas9不仅需要“开”,也需要“关”。
开发基于植物细胞自噬的蛋白降解系统
近日,华南农业大学教授李发强/谢庆军课题组合作,首次报道了一套基于植物细胞自噬的蛋白降解系统,证明了靶向自噬的降解技术在植物研究中的可行性和发展潜力。相关研究在线发表于New Phytologist。 细胞自噬是真核生物中一种保守的代谢机制,通过溶酶体或液泡来降解细胞质中的多余蛋白质或受损细胞器
中科院利用CRISPR及TALEN技术获基因组编辑新突破
来自中科院遗传与发育生物学研究所、中科院微生物研究所的研究人员利用TALEN和CRISPR-Cas9技术,在六倍体面包小麦中成功实现了同时编辑3个同源等位基因(homoeoallele) ,并由此赋予了小麦对白粉菌(powdery mildew)的遗传性抵抗力。这一突破性的成果发表在7月20日的
生科院建立高效谷氨酸棒杆菌CRISPRCpf1基因组编辑系统
5月4日,《自然-通讯》(Nature Communications)发表了中国科学院上海生命科学研究院植物生理生态研究所合成生物学重点实验室杨晟研究组题为CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum 的研究成
遗传发育所等联合研究建立植物基因组引导编辑技术体系
基因组编辑技术可以定向修饰植物基因组,从而大大加速植物育种的进程,是实现作物精准育种的重要技术突破。然而,作物的许多重要农艺性状是由基因组中的单个或少数核苷酸的改变或突变造成的。基于CRISPR/Cas系统的基因组编辑,可利用外源修复模板通过同源重组介导的修复方式(HDR)实现目标基因特定核苷酸
Nat-Biotechnol:高彩霞团队开发植物基因组引导编辑技术
许多遗传和育种研究表明,点突变和插入/缺失(插入和缺失, indel)可以改变农作物的优良性状。尽管核酸酶启动的同源介导修复(homology-directed repair, HDR)可以产生这种变化,但它受到效率低的限制。碱基编辑器是用于进行碱基转换的强大工具,但不能用于进行碱基颠换、插入或
遗传发育所在植物基因组编辑方法研究中取得进展
基因组编辑技术是最新发展起来的植物基因功能研究及定向育种的重要手段。在植物中实现基因组编辑的常规方法是将序列特异性核酸酶(如CRISPR/Cas9)的编码DNA转化植物细胞,稳定表达进而实现对目的基因的定点编辑。这种情况下,CRISPR载体整合在植物染色体中,需通过后代分离获得不含CRISPR/
Cell-Res:CRISPR/Cas9瞬时表达基因组编辑体系
基因组编辑技术是最新发展起来的植物基因功能研究及定向育种的重要手段。在植物中实现基因组编辑的常规方法是将序列特异性核酸酶(如CRISPR/Cas9)的编码DNA转化植物细胞,稳定表达进而实现对目的基因的定点编辑。这种情况下,CRISPR载体整合在植物染色体中,需通过后代分离获得不含CRISPR/
遗传发育所在植物基因组编辑方法研究中取得进展
基因组编辑技术是最新发展起来的植物基因功能研究及定向育种的重要手段。在植物中实现基因组编辑的常规方法是将序列特异性核酸酶(如CRISPR/Cas9)的编码DNA转化植物细胞,稳定表达进而实现对目的基因的定点编辑。这种情况下,CRISPR载体整合在植物染色体中,需通过后代分离获得不含CRISPR/
自然子刊:揭示基因组编辑新机制
中国科学院上海生命科学研究院(人口健康领域)中科院-马普学会计算生物学伙伴研究所杨力研究组与上海科技大学陈佳研究组、南京医科大学沈彬研究组合作研究揭示了胞嘧啶脱氨酶(APOBEC)在CRISPR/Cas9引发的DNA断裂修复过程中产生突变的新机制,为进一步提高基因组编辑保真度提供了新思路。 C
Science发表CRISPR基因组编辑重要成果
利用两种互补的分析方法,Whitehead研究所和麻省理工学院-哈佛大学Broad研究所的科学家们,第一次在人类基因组中鉴别出了人类细胞系或培养人类细胞生存及增殖必需的基因宇宙。 他们的研究结果和在该研究中开发出的材料,不仅为全球科研团体提供了宝贵的资源,还可应用于发现各种人类癌症药物可靶向的