俄歇电子能谱仪对表面元素半定量分析
样品表面出射俄歇电子强度与样品中该原子的浓度有线性关系 , 利用这种关系可以进行元素的半定量分析。俄歇电子强度不仅与原子多少有关 , 还与俄歇电子的逃逸深度、样品的表面光洁度、元素存在的化学状态有关。因此 , AES 技术一般不能给出所分析元素的绝对含量 , 仅能提供元素的相对含量。 必须注意的是 , AES 给出的相对含量也与谱仪的状况有关。因为不仅各元素的灵敏度因子不同 ,AES 谱仪对不同能量俄歇电子的传输效率也不同 , 并会随谱仪污染程度而改变。当谱仪分析器受到严重污染时 , 低能端俄歇峰的强度可以大幅度下降。 AES 仅提供表面 1 ~ 3nm 表面层信息 , 样品表面的C 、O 污染以及吸附物的存在 , 也会严重影响定量分析结果。由于俄歇能谱各元素的灵敏度因子与一次电子束的激发能量有关 , 因此激发源的能量也会影响定量结果。......阅读全文
俄歇电子能谱仪对表面元素半定量分析
样品表面出射俄歇电子强度与样品中该原子的浓度有线性关系 , 利用这种关系可以进行元素的半定量分析。俄歇电子强度不仅与原子多少有关 , 还与俄歇电子的逃逸深度、样品的表面光洁度、元素存在的化学状态有关。因此 , AES 技术一般不能给出所分析元素的绝对含量 , 仅能提供元素的相对含量。 必须注意
简述俄歇电子能谱仪对表面元素分布分析
俄歇电子能谱表面元素分布分析 , 也称为俄歇电子能谱元素分布图像分析。它可以把某个元素在某一区域内的分布以图像方式表示出来 , 就象电镜照片一样。只不过电镜照片提供的是样品表面形貌 , 而俄歇电子能谱提供的是元素的分布图像。结合俄歇化学位移分析 , 还可以获得特定化学价态元素的化学分布图像。俄歇
关于俄歇电子能谱仪对表面元素定性分析
俄歇电子的能量仅与原子的轨道能级有关 , 与入射电子能量无关 , 也就是说与激发源无关。对于特定的元素及特定的俄歇跃迁过程 ,俄歇电子的能量是特征性的。因此可以根据俄歇电子的动能 , 定性分析样品表面的元素种类。由于每个元素会有多个俄歇峰 , 定性分析的准确度很高。 AES 技术可以对除 H 和
俄歇电子能谱定量分析
大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇电子的发射深度。 能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发射深度仅限于表面以下大约2nm以内,约相当于表面几个原子层,且发射(逸出)深度与俄歇电子的能量以
俄歇电子能谱仪
俄歇电子能谱仪(Auger Electron Spectroscopy,AES),作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析
俄歇电子能谱的定量分析或半定量分析
俄歇电子强度与样品中对应原子的浓度有线性关系,据此可以进行元素的半定量分析。俄歇电子强度除与原子的浓度有关外,还与样品表面的光洁度、元素存在的化学状态以及仪器的状态(谱仪对不同能量的俄歇电子的传输效率不同)有关,谱仪的污染程度、样品表面的C和O的污染、吸附物的存在、激发源能量的不同均影响定量分析结果
俄歇电子能谱
俄歇电子能谱简称AES,是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的电子称为俄歇电子。1953年,俄歇电子能谱逐渐开始被实际应用
俄歇电子能谱
俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出来的
俄歇电子能谱仪对表面元素价态分析的相关介绍
虽然俄歇电子的动能主要由元素的种类和跃迁轨道所决定 , 但由于原子外层电子的屏蔽效应 , 芯能级轨道和次外层轨道上电子的结合能 , 在不同化学环境中是不一样的 , 而是有一些微小的差异。轨道结合能的微小差异可以导致俄歇电子能量的变化 , 称为俄歇化学位移。一般来说 , 俄歇电子涉及到三个原子轨道
俄歇电子能谱仪简介
俄歇电子能谱仪(AugerElectronSpectroscopy,AES),作为一种最广泛使用的分析方法而显露头角。这种方法的优点是:在靠近表面5-20埃范围内化学分析的灵敏度高;数据分析速度快;能探测周期表上He以后的所有元素。虽然最初俄歇电子能谱单纯作为一种研究手段,但现在它已成为常规分析
关于俄歇电子能谱的表面分析介绍
俄歇电子能谱在固体中运行也同样要经历频繁的非弹性散射,能逸出固体表面的仅仅是表面几层原子所产生的俄歇电子,这些电子的能量大体上处于 10~500电子伏,它们的平均自由程很短,大约为5~20埃,因此俄歇电子能谱所考察的只是固体的表面层。俄歇电子能谱通常用电子束作辐射源,电子束可以聚焦、扫描,因此俄
俄歇电子能谱(2)
基本原理物理原理入射电子束和物质作用,可以激发出原子的内层电子形成空穴。外层电子填充空穴向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。俄歇电子和X射线产额入射电子束和物质作用,可以激发出原子的内层电子。外层电子
俄歇电子能谱(1)
俄歇电子能谱(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄歇效应,而逃脱出
俄歇电子能谱(3)
俄歇跃迁对于自由原子来说,围绕原子核运转的电子处于一些不连续的"轨道 ”上,这些 “ 轨道 ” 又组成K、L、M、N 等电子壳层。 我们用“ 能级 ”的概念来代表某一轨道上电子能量的大小。由于入射电子的激发,内层 电子被 电离, 留下一个空穴。 此时原子处于激发态, 不稳定。 较高能级上的一
俄歇电子能谱仪对材料失效分析简介
俄歇电子能谱仪具有很高表面灵敏度 , 在材料表面分析测试方面有着不可替代的作用。通过正确测定和解释 AES 的特征能量、强度、峰位移、谱线形状和宽度等信息 , 能直接或间接地获得固体表面的组成、浓度、化学状态等多种信息 , 所以在国内外材料表面分析方面 AES 技术得到广泛运用 。 材料失效分
对俄歇电子能谱仪的定性分析
通过正确测定和解释AES的特征能量、强度、峰位移、谱线形状和宽度等信息,能直接或间接地获得固体表面的组成、浓度、化学状态等多种情报。 定性分析 定性分析主要是利用俄歇电子的特征能量值来确定固体表面的元素组成。能量的确定在积分谱中是指扣除背底后谱峰的最大值,在微分谱中通常规定负峰对应的能量值。
俄歇电子能谱仪的应用
近年来,俄歇电子能谱仪( AES) 在材料表面化学成分分析、表面元素定性和半定量分析、元素深度分布分析及微区分析方面崭露头角。AES 的优点是,在距表面 0.5 ~ 2nm 范围内, 灵敏度高、分析速度快,能探测周期表上 He 以后的所有元素。最初,俄歇电子能谱仪主要用于研究工作 ,现已成为一种常规
俄歇电子能谱仪的简介
欧杰电子能谱术也称俄歇电子能谱仪(Auger electron spectroscopy,简称AES),是一种表面科学和材料科学的分析技术。因此技术主要借由俄歇效应进行分析而命名之。这种效应系产生于受激发的原子的外层电子跳至低能阶所放出的能量被其他外层电子吸收而使后者逃脱离开原子,这一连串事件称为俄
俄歇电子能谱的原理
向样品照射电子束后,电子和物质之间产生剧烈的相互作用,如下图(上)所示,各种电子和电磁波被释放出来。由于其中俄歇电子具备各个元素特有的能量,所以如对能谱进行解析,可以鉴定物质表面所存在的元素(定性分析)通过峰强度对比则可以定量测定元素(定量分析)。另外,俄歇电子在物质中非弹性散射情况下前进的距离(平
俄歇电子能谱的特点
①俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。右图是一些主要的俄歇电子能量。可见对于Z=3-14的元素,最突出的俄歇效应是由KLL跃迁形成的,对Z=14-40的元素是LMM跃迁,对Z=40-79的元素是MNN跃迁。大多数元素和一些化合物的俄歇电子能量可以从手册中查到。②俄歇电子只能从20
俄歇电子能谱法(AES)
AES可以用于研究固体表面的能带结构、表面物理化学性质的变化(如表面吸附、脱附以及表面化学反应);用于材料组分的确定、纯度的检测、材料尤其是薄膜材料的生长等。俄歇电子能谱(Auger Electron Spectrometry,简称AES)是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检
俄歇电子能谱仪器构造
俄歇能谱仪包括电子光学系统、电子能量分析器、样品安放系统、离子枪、超高真空系统。以下分别进行介绍。电子光学系统电子光学系统主要由电子激发源(热阴极电子枪)、电子束聚焦(电磁透镜)和偏转系统(偏转线圈)组成。电子光学系统的主要指标是入射电子束能量,束流强度和束直径三个指标。其中AES分析的最小区域基本
俄歇电子能谱仪的测试结果
俄歇电子能谱俄歇电子数目N(E)随其能量E的分布曲线称为俄歇电子能谱。一般情况下,俄歇电子能谱是迭加在缓慢变化的,非弹性散射电子形成的背底上。俄歇电子峰有很高的背底,有的峰还不明显,不易探测和分辩。为此通常采用电子能量分布的一次微分谱,即N’(E)=dN(E)/dE来显示俄歇电子峰。这时俄歇电子峰形
俄歇电子能谱仪的特点简介
①俄歇电子的能量是靶物质所特有的,与入射电子束的能量无关。右图是一些主要的俄歇电子能量。可见对于Z=3-14的元素,最突出的 俄歇效应是由KLL跃迁形成的,对Z=14-40的元素是LMM跃迁,对Z=40-79的元素是MNN跃迁。大多数元素和一些化合物的俄歇电子能量可以从手册中查到。 ②俄歇电子
俄歇电子能谱仪的工作原理
当一个具有足够能量的入射电子使原子内层电离时,该空穴立即就被另一电子通过L1→K跃迁所填充。这个跃迁多余的能量EK-EL1如使L2能级上的电子产生跃迁,这个电子就从该原子发射出去称为俄歇电子。这个俄歇电子的能量约等于EK-EL1-EL2。这种发射过程称为KL1L2跃迁。此外类似的还会有KL1L1
俄歇电子能谱仪对挥发性样品和表面污染样品的处理
1、挥发性样品的处理 对于含有挥发性物质的样品,在样品进入真空系统前必须清除挥发性物质。一般可以对样品进行加热或用溶剂清洗。对含有油性物质的样品,一般依次用正己烷、丙酮和乙醇超声清洗,然后红外烘干,才可以进入真空系统。 2、表面污染样品的处理 对于表面有油等有机物污染的样品,在进入真空系统
俄歇电子能谱的样品表面的处理和制备
(1) 离子束溅射因样品在空气中极易吸附气体分子(包括元素O、C等),当需要分析氧、碳元素或清洁被污染的固体表面时,应先用离子束溅射样品,去除污染物。(2) 样品制备含有挥发性物质和表面污染的样品:对样品加热或用溶剂清洗。清洗溶剂:正己烷、丙酮、乙醇等。绝对禁止带有强磁性的样品进入分析室,因磁性会导
俄歇电子能谱仪对带有微弱磁性样品的处理
带有微弱磁性样品的处理 由于俄歇电子带有负电荷,在微弱磁场作用下可以发生偏转。当样品具有磁性时,样品表面发射的俄歇电子会在磁场作用下偏离接收角,不能到达分析器,得不到正确的AES谱。此外,当样品的磁性很强时,还有导致分析器头及样品架磁化的危险,因此,绝对禁止带有强磁性的样品进入分析室。对于具有
关于俄歇电子能谱的俄歇电流的基本介绍
俄歇电子能谱的俄歇电流,从纯净固体表面测得的俄歇电流大约是10-5Ip,Ip是入射电子束流。 俄歇电流原则上可以通过估计电离截面来计算,但由于受多种因子的影响。 计算很复杂,并与实验符合得不好。 在实际测量时,为了使俄歇电流达到最大,必须选择适当的EP/EW比例。EP是入射电子的能量,EW是最初
俄歇电子能谱法的简介
中文名称俄歇电子能谱法英文名称Auger electron spectroscopy定 义测量和分析试样产生的俄歇电子的能谱的电子能谱法。应用学科机械工程(一级学科),分析仪器(二级学科),能谱和射线分析仪器-能谱和射线分析仪器分析原理(三级学科)