石墨炉原子化法测定条件的选择要素和优化方法
关于各个元素的石墨炉原子吸收光谱分析法(GFAAS)测定,商品仪器都有推荐条件。在此仅对一些重要部分进行论述,分析者对待测样品性质的了解是至关重要的,还有就是进样量(进样体积)的选定和对分析结果的要求,是设定和优化测定条件的依据。此外还应考虑石墨管自身的一些问题,如不同批次的石墨管之间在纯度、密度、电阻率等方面的差异,同一只石墨管在使用过程中管壁变薄或表面变粗糙,以致发生热解层脱落都是影响测定条件选择的因素。1.升温模式 斜坡升温主要用于干燥阶段。斜坡升温模式的特点是能缓慢而平稳地由起始温度升到要求达到的温度。阶梯升温模式又称台阶升温,它主要用于灰化阶段,也有采用斜坡升温与阶梯升温相结合的方式。阶梯升温模式的特点是升温速度快。原子化阶段大都采用温控升温或温控最大功率升温方式。2.干燥、灰化、原子化的温度和时间 (1)干燥升温模式、温度和时间的选择。 干燥条件直接影响分析结果的精度,升温模式一般都选择......阅读全文
石墨炉原子化法测定条件的选择要素和优化方法
关于各个元素的石墨炉原子吸收光谱分析法(GFAAS)测定,商品仪器都有推荐条件。在此仅对一些重要部分进行论述,分析者对待测样品性质的了解是至关重要的,还有就是进样量(进样体积)的选定和对分析结果的要求,是设定和优化测定条件的依据。此外还应考虑石墨管自身的一些问题,如不同批次的石墨管之间在纯度、密度、
石墨炉原子吸收分析条件的选择
在石墨炉原子吸收法中,灯电流、吸收线和光谱通带等条件的选择基本与火焰法一致,对于石墨炉原子吸收法,合理选择干燥、灰化、原子化及除残温度与时间是十分重要的。 1.干燥温度和时间的选择 干燥阶段的目的是蒸发样品溶剂,以蒸尽溶剂而又不发生进溅为原则,一般选择略高于溶剂沸点的温度。斜坡升温有利于干燥。干
石墨炉原子吸收最佳工作条件的选择
包扣 干燥 灰化 原子化 看分析手册 或者自己根据不同的元素试验 不过这样太复杂。一般仪器都有推荐的方法
石墨炉原子吸收分析Z佳条件的选择
1.干燥温度和时间的选择 干燥阶段的目的是蒸发样品溶剂,以蒸尽溶剂而又不发生进溅为原则,一般选择略高于溶剂沸点的温度。斜坡升温有利于干燥。干燥时间由进样体积决定,一般为2~3s/pL。 2.灰化温度和时间的选择 灰化的目的是除去基体和局外组分,在保证被测元素没有损失的前提下应尽可能使用较高的
石墨炉原子吸收光谱法测定时要选择的仪器实验条件
有两点:(1)效率高:石墨炉的原子化效率接近100%,而火焰法的原子化效率只有1%左右.(2)灵敏度高:用石墨炉进行原子化时,基态原子在吸收区内的停留时间较长石墨炉法,检测灵敏度高火焰法稍差火焰法测试的元素多石墨炉法相对少石墨炉属于电加热方式最明显的,进样量石墨炉小.分析速度火焰快.火焰原吸的检测是
石墨炉原子吸收法测定钒含量的试剂选择
试剂除非另有说明,分析时均使用符合国家标准或行业标准的分析纯试剂,去离子水或同等纯度的水。①硝酸(HNO3):ρ=1.42 g/ml,优级纯及分析纯。②载气:氩气,纯度不低于99.99%。③(1+1)硝酸溶液。④(1+49)硝酸溶液:用硝酸①配制;(1+499)硝酸溶液:用硝酸①配制。⑤偏钒酸铵(N
石墨炉原子吸收法测定硒含量的仪器选择
仪器①常用实验室仪器。②原子吸收分光光度计及相应的辅助设备,配有石墨炉和背景校正器,光源选用空心阴极灯或无极放电灯,仪器操作参数见表1 和表2 ,或参照厂家的说明进行选择。表1 仪器使用条件元素波长(nm)灯电流(mA)通带宽度(nm)载气硒196.081.3氩气表2 升温程序阶段温度(℃)
石墨炉原子吸收法测定钒含量的仪器选择
仪器①常用实验室仪器。②原子吸收分光光度计及相应的辅助设备,配有石墨炉和背景校正器,光源选用空心阴极灯或无极放电灯。仪器操作参数见表1 和表2 ,或参照厂家的说明书进行选择。
石墨炉原子吸收法测定硒含量的试剂选择
试剂除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。①硝酸(HNO3):ρ=1.42 g/ml,优级纯。②载气:氩气,纯度不低于99.9%③(1+1)硝酸溶液、(1+49)硝酸溶液、(1+499)硝酸溶液:皆用硝酸①配制。④硒粉:高纯,99.999%。⑤硒标准贮备液:10
萃取石墨炉原子吸收法测定铟、铊的仪器和试剂选择
仪器①原子吸收分光光度计,帯石墨炉及背景校正器;②涂Mo或涂La石墨管。仪器参数如表1 所示。表1 铟、铊的测定条件元素铟铊波长(nm)325.6276.8通带宽度(nm)0.40.4干燥(℃/s)80~120/3080~120/20灰化(℃/s)700/30500/20原子化(℃/s)2600
用石墨炉原子吸收光谱法测定时要选择的仪器实验条件
选择元素、干燥温度、干燥时间、灰化温度、灰化时间、激发温度.
石墨炉原吸光谱干燥、灰化、原子化的温度和时间选择
1干燥升温模式、温度和时间的选择 干燥条件直接影响分析结果的精度,升温模式一般都选择斜坡升温方式,温度略高于溶剂的沸点,时间由进样体积确定,每微升2~3.要求通过缓慢而平稳的升温过程达到设定的温度,没有发生样品飞溅,再将温度恒定保持一段时间(10~30s),达到溶剂完全蒸发除去。 在实验工作
火焰原子化器和石墨炉原子化器的区别
主要区别在:1、原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。原子化程序分为干燥、灰化、原子化、高温净化 。原子化
火焰原子化器和石墨炉原子化器的区别
主要区别在:1、原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。原子化程序分为干燥、灰化、原子化、高温净化 。原子化
火焰原子化器和石墨炉原子化器的区别
主要区别在:1、原子化器不同火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。原子化程序分为干燥、灰化、原子化、高温净化 。原子化
火焰原子化器和石墨炉原子化器的区别
主要区别在: 1、原子化器不同 火焰原子化器:由喷雾器、预混合室、燃烧器三部分组成。特点:操作简便、重现性好。 石墨炉原子器:是一类将试样放置在石墨管壁、石墨平台、碳棒盛样小孔或石墨坩埚内用电加热至高温实现原子化的系统。其中管式石墨炉是最常用的原子化器。 原子化程序分为干燥、灰化、原子化
石墨炉原子吸收法测定水样中的铍含量的仪器和试剂选择
仪器①原子吸收分光光度计,带石墨炉和背景校正器;③仪器参数:灯电流12.5 mA,波长234.9 nm,通带宽度1.3 nm;④石墨炉加热程序,如表1 所示。表1 石墨炉加热程序阶段温度(℃)时间(s)干燥80~12020灰化60010原子化26005清除28002试剂①硫酸:优级纯。②铍标准贮
石墨炉原子化器的原理
石墨炉原子化器是一个电加热器,利用电能加热盛放试样的石墨容器,使之达 到髙温以实现试样溶液中被测元素形成基态原子。
石墨炉原子化器的优点
石墨炉原子化在充有惰性保护气的气室 内,在强还原性石墨介质中进行,有利于难溶 氧化物的原子化;可不经过前处理直接进行分 析 ,适于生物试样的分析;原子化效率(atomization efficiency ) 高。
石墨炉原子化器的概念
非火焰原子化器应用最为广泛的一种,1959年苏联物理学家G.B.利沃夫首先将原子发射光谱法中石墨炉蒸发的原理用于原子吸收光谱法中,开创了无焰原子化方式。由于原子化效率高,石墨炉法的相对灵敏度高,最适合痕量分析。为改进石墨炉性能,提高抗干扰能力,正在开发以贵重金属做衬里和涂层的新石墨炉。石墨炉原子化器
石墨炉原子化法的原理
非火焰原子化器应用最为广泛的一种,1959年苏联物理学家Б.B.利沃夫首先将原子发射光谱法中石墨炉蒸发的原理用于原子吸收光谱法中,开创了无焰原子化方式。由于原子化效率高,石墨炉法的相对灵敏度可达10-9-10-12g/ml,最适合痕量分析。它的基本原理是利用大电流(常高达数百安)通过高阻值的石墨器皿
石墨炉原子化的过程介绍
石墨炉原子化又称作电热原子化,过程一般分为四个阶段,即干燥、灰化(热解)、原子化和净化(除残)。对石墨炉原子吸收分析,在原子化之前样品的共存组分与待测元素分离得越好,干扰就越小。非光谱干扰和背景吸收都是这样,分离的效率取决于待测元素与共存物质挥发性之间的差异,差异越大分离效果越好。原子化前的干燥和灰
石墨炉原子化器的原理
石墨炉原子化器是一个电加热器,利用电能加热盛放试样的石墨容器,使之达 到髙温以实现试样溶液中被测元素形成基态原子。
石墨炉原子化器的结构
管式石墨原子化器由加热电源、石墨管、炉体三部分组成。 加热电源 加热电源供给原子化器能量,一般采用低压、大电流的交流电。为保证炉温恒定,要求提供的电流稳定。炉温可在1~2s内达3000°C。 [2] 石墨管 由致密石墨制成,有两种形状:一种是沟纹型,用于有机溶液,取样可达50μm;一种是
石墨炉原子吸收法测定硒含量的方法原理
方法原理将试样或消解处理过的试样直接注入石墨炉,在石墨炉中形成的硒基态原子对特征电磁辐射(196.0 nm)产生吸收,将测定的试样吸光度与标准溶液的吸光度进行比较,确定试样中被测元素硒的浓度。
石墨炉原子吸收法测定钒含量的方法原理
将试样或消解处理过的试样直接加入石墨炉,在石墨炉中形成的基态原子对特征电电磁辐射(318.4 nm)产生吸收,将测得的试样吸光度和标准溶液的吸光度进行比较,确定试样中被测元素的浓度。
石墨炉原子吸收法测定化探样品中的痕量金
我们在现有资料的基础上,经过多次试验,提出了用聚醚型聚胺酯泡沫塑料进行震荡吸附,从而达到分离沉淀、富集金的目的。耶拿ZEEnit 650P原子吸收分光光度计采用塞曼效应扣除背景,具有灵敏度高,检测限低;用样量少(通常固体样品为0.1~10毫克,液体试样为5~50微升,精密度为2%~7%)等特点,
石墨炉原子化器结构介绍
管式石墨原子化器由加热电源、石墨管、炉体三部分组成。加热电源加热电源供给原子化器能量,一般采用低压、大电流的交流电。为保证炉温恒定,要求提供的电流稳定。炉温可在1~2s内达3000°C。 石墨管由致密石墨制成,有两种形状:一种是沟纹型,用于有机溶液,取样可达50μm;一种是广泛应用的标准型,长约28
石墨炉原子化器额定使用方法
使用石墨炉时一般采取程序升温的方式,即先通小电流,在100°C左右进行试样的干燥,主要目的是除去溶剂和水分。通常在100~1800°C进行灰化,以除去基体或其它元素对其干扰。然后再升温进行试样原子化,温度根据需要选定,最高可达3000°C.测定后将石墨炉加高温空烧一段时间将前一实验余留的待测元素挥发
关于石墨炉原子化器的简介
非火焰原子化器应用最为广泛的一种,1959年苏联物理学家G.B.利沃夫首先将原子发射光谱法中石墨炉蒸发的原理用于原子吸收光谱法中,开创了无焰原子化方式。由于原子化效率高,石墨炉法的相对灵敏度高,最适合痕量分析。为改进石墨炉性能,提高抗干扰能力,正在开发以贵重金属做衬里和涂层的新石墨炉。石墨炉原子