实验室分析方法原子荧光光谱分析的定量关系式

原子荧光光谱法是用一定强度的激发光源照射含有一定浓度待测元素的原子蒸气时,产生一定强度的特征原子荧光光谱,测定原子荧光的强度即可求得样品中待测元素的含量。因此,原子荧光的发射强度与样品中待测元素的浓度、激发光源的发光强度以及其他参数之间存在着一定的函数关系。从式(1-8)可以看出,当实验条件一定时,除 N 外,其他参数皆为常数,N 与试液中分析元素的浓度c成正比。因此,式(1-8)可以进一步简化为: (1-10)式(1-10)即为原子荧光定量分析的基本关系式。当使用连续光源激发荧光时,总的荧光强度是围绕着中心频率v在吸收线轮廓内荧光强度If的积分面积。对式1-5)积分可得(1-11)同样,从原子吸收的处理方法中可以得到 (1-12) 将式(1-12)代入式(1-11),则积分荧光强度的表达式为 (1-13)当实验条件一定时,式(1-13)同样可简化为 (1-14)可见,当使用连续......阅读全文

实验室分析方法原子荧光光谱分析的定量关系式

原子荧光光谱法是用一定强度的激发光源照射含有一定浓度待测元素的原子蒸气时,产生一定强度的特征原子荧光光谱,测定原子荧光的强度即可求得样品中待测元素的含量。因此,原子荧光的发射强度与样品中待测元素的浓度、激发光源的发光强度以及其他参数之间存在着一定的函数关系。从式(1-8)可以看出,当实验条件一定时,

实验室分析方法原子荧光光谱分析法定量分析方法

原子荧光光谱分析法常用的定量分析方法:一、校准曲线法校准曲线法是原子荧光分析法中常用的一种定量方法。前面已经指出,原子荧光光谱分析是一种相对测定方法,不能由分析信号的大小直接获得被测元素的含量。需通过一个关系式将分析信号与被测元素的含量关联起来。校正曲线就是用来将分析信号(即吸光度)转换为被测元素的

原子荧光光谱分析定量原理

原子荧光光谱法是用一定强度的激发光源照射含有一定浓度的待测元素的原子蒸气时,使基态原子跃迁到激发态,然后去激发回到低能态或基态,产生一定强度的特征原子荧光光谱,测定原子荧光的强度即可测得样品中待测元素的含量。关于原子荧光强度与分析元素浓度之间的关系,文献中曾经推导过一些比较复杂的关系式,但是从实际工

实验室分析方法原子荧光光谱分析的特点

原子荧光光谱法是在原子发射光谱法和原子吸收光谱法的基础上综合发展起来的。从理论上来说,原子荧光光谱法不仅具有原子发射光谱法和原子吸收光谱法的优点,同时也克服了两者的不足,是一种性能更为优良的原子光谱分析方法,其优点可以归纳为以下几个方面。(1)高灵敏度、低检出限原子荧光的发射强度与激发光源的强度成正

实验室分析方法原子荧光光谱分析条件优化

原子荧光光谱分析包括灯电流、负高压、原子化温度、延迟时间、注入时间、读数时间等参数的设置,一般应根据被测元素的特性、氢化物发生条件、被测试含量及标准曲线的浓度范围等因素来选择最佳参数。一、空心阴极灯灯电流的选择原子荧光光谱仪中所采用的光源为特殊设计的空心阴极灯,包括特种空心阴极灯(单阴极)和带有辅助

实验室分析方法原子荧光光谱分析的发展趋势

原子荧光光谱分析法从产生至今,一直在不断地完善和发展中。各种新方法、新技术不断出现,为原子荧光光谱分析的内容带来了根本性的变化,在分析化学领域中的地位也日益提高。 green field[106]曾对原子荧光光谱法的进展及展望进行了评述。可以预计,随着科学技术的不断进步和发展,原子荧光光谱分析会得到

实验室分析方法液相色谱的定量方法—定量方法

峰高和峰面积测量仅是对检测信号的一种响应该响应需同组分的浓度或者质量结合方可完成定量方法。无论在相同的还是不同的色谱条件下进行的试验,均要采取一定的手段加以校正,才可能得到准确的定量结果。主成分自身对照法、峰面积归化、内标法、外标法及标准加入法是HPLC定量分析中常用的校正技术。不加校正因子的主成分

原子荧光光谱仪的定量分析

  关键词:原子荧光分光光度计;定量分析;美析仪器   仪器分析,除中子活化分析、库仑分析等少数分析方法是测量之外,大多数分析包括原子荧光光谐分析在内,都是相对测量法,对分析仪器检测器响应值进行校正,找出被测组分含量(或浓度)与检测器响应信之间的定量关系式。在原子荧光光谙分析中,是建立荧光强度与被

原子荧光光谱仪的定量分析

仪器分析,除中子活化分析、库仑分析等少数分析方法是测量之外,大多数分析包括原子荧光光谐分析在内,都是相对测量法,对分析仪器检测器响应值进行校正,找出被测组分含量(或浓度)与检测器响应信之间的定量关系式。在原子荧光光谙分析中,是建立荧光强度与被测组分含量或浓度的关系式。基于此定量关系式,根据样品被测组

光谱分析的定量原理

用光谱不仅能定性分析物质的化学成分,而且能确定元素含量的多少。光谱分定量原理一般是依据光的强度与待测分析物质含量有确定的函数关系。由于某种特定光谱光是由某特定物质产生的,一般该物质含量越大,相应的光谱光的强度也越大,在目前大多数光谱仪器中,通常是控制仪器在一定的条件下,通过建立特辱定光谱光的强度与待

实验室分析方法原子荧光光谱的类型

自从原子荧光现象发现以来,已观察到多种原子荧光光谱的类型。一般来说,应用在分析上最基本的形式主要有共振荧光、非共振荧光、敏化荧光和多光子荧光等。1、共振荧光共振荧光是指激发波长与发射波长相同的荧光,如图 a 所示。由于相应于原子的激发态和基态之间的共振跃迁的概率一般比其他跃迁的概率大得多,所以共振跃

原子吸收光谱法的发射方式是什么

原子发射光谱法(AES),是利用原子或离子在一定条件下受激而发射的特征光谱来研究物质化学组成的分析方法.根据激发机理不同,原子发射光谱有3种类型:① 原子的核外光学电子在受热能和电能激[原子发射光谱]原子发射光谱发而发射的光谱,通常所称的原子发射光谱法是指以电弧、电火花和电火焰( 如ICP等)为激发

定量光谱分析的相关介绍

  20世纪初,逐步实现了定量光谱分析。1890年,胡特和德利菲德的研究成果表明,照相底片的黑度与产生映像的曝光量的对数在一定范围内成直线关系,这就是后来的乳剂特性曲线。这一发现为“摄谱法光谱定量分析”准备了条件。德国人格拉赫在1924年经施伐策尔改进了该方法:如果在几年试样中,基体元素的量是恒定的

实验室分析仪器色谱与原子荧光光谱分析联用介绍

原子荧光光谱(AFS)分折具有高度的元素专一性和高的灵敏度。但它没有价态或形态的分辨能力。今天的分析化学已经超出了元素分析的水平,而要对元素的不同价态、形态给出一个全面的分析结果,这就要求将AFS与各种分离技术联用来实现。冷阱分离和色谱分离是其中主要的两类联用分离技术。冷阱的分离能力相对较低,且使用

实验室原子吸收光谱分析的定量方法

原子吸收光谱分析是一种动态分析方法,用校正曲线进行定量。常用的定量方法有标准曲线法、标准加入法、简易加标法和浓度直读法。在这些方法中,标准曲线法是最基本的定量方法。一、标准(工作)曲线法这是原子吸收光谱法最常用的方法。此法是根据被测元素的灵敏度及其在样品中的含量来配制标准溶液系列,测出标准系列的吸光

无色散原子荧光光谱分析法方法的特点

①采用HG/CVG进样系统将待测元素导入;②待测元素激发态原子发射的原子荧光不经分光直接检测。

RNA-光谱分析与定量

            试剂、试剂盒 DEPC 无核酸酶的水 仪器、耗材 紫外分光光度计 石英比色杯

RNA-光谱分析与定量

 试剂、试剂盒 DEPC 无核酸酶的水仪器、耗材 紫外分光光度计 石英比色杯实验步骤 一、材料与设备1)紫外分光光度计。2) 石英比色杯。3)DEPC4) 无核酸酶的水。二、操作方法(一)准备分光光度计用 0.1%DEPC 水浸泡比色皿至少 15 min。2) 用水或无 UV 吸收的缓冲掖设置基线。

实验室分析方法单组分的定量分析方法

根据Beer定律,物质在一定波长处的吸光度与浓度成正比,这是定量计算的依据。但是很多溶剂本身在紫外区有吸收峰或末端吸收,选用溶剂时应考虑溶剂本身吸收的干扰。选择溶剂时,被测组分的测量波长必须大于溶剂的截止波长。常用的定量分析方法有标准曲线法、标准对照法、吸光系数法及差示分光法等,以下介绍前三种方法。

实验室分析方法液相色谱的定量方法—信号测量

HPLC不仅是一种分离手段,同时也是一种优良的定量分析技术。它不仅能够用于对样品(包括纯样品)中基本或主成分的定量,还能用于对中等浓度多组分混合物的分析以及基体中痕量(10-9或更低)杂质的浓度评价。精心设计行之有效的分析方法可以对主成分的分析在准确度和精密度两方面显示出较高的水平[精密度为±(1%

实验室分析方法原子荧光光谱的产生介绍

原子荧光光谱的本质即是以光辐射激发的原子发射光谱。一般情况下,气态自由原子处于基态,当吸收外部光源一定频率的辐射能量后,原子的外层电子由基态跃迁至高能态,即激发态。处于激发态的电子很不稳定,在极短的时间(≈10-8s)内即会自发地释放能量返回到基态。若以辐射的形式释放能量,则所发射的特征光谱即为原子

实验室分析方法原子荧光光谱法

原子荧光光谱法( AFS) 因化学蒸气分离、非色散光学系统等特性,是测定微量砷、锑、铋、汞、硒、碲、锗等元素最成功的分析方法之一。

实验室分析方法色谱定量分析常用方法

内标法;外标法;归一化法。

油菜叶绿素含量与氮素的关系式推算方法

油菜是我国最重要的油料作物,面积和总产占世界油菜面积和总产量的30%左右,均居世界一首位,而它的产物油菜籽又是重要的植物油,它的品质主要是受叶绿素含量的影响,然而通过使用叶绿素测量仪来进行证明发现,叶绿素含量与土壤中的氮元素存在一定的关系。通过使用叶绿素检测仪来对油菜的20组数据进行spad值测量与

精简解析原子发射光谱分析法的工作原理

  原子发射光谱法是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的。原子发射光谱法可对约70种元素(金属元素及磷、硅、砷、碳、硼等非金属元素)进行分析。在一般情况下,用于1%以下含量的组份测定,检出限可达ppm,精密度为±10%左右,线性范

原子吸收光谱分析的定量方法之标准曲线法

1.5 原子吸收光谱分析的定量方法原子吸收光谱分析是一种动态分析方法,用校准曲线进行定量。常用的定量方法有标准曲线法、标准加入法和浓度直读法。如为多通道仪器,可用内标法定量。在这些方法中,标准曲线法是最基本的定量方法。1.5.1 标准曲线法前面已经指出,原子吸收光谱和原子荧光光谱分析是一种相对测定方

定量光谱分析的历史发展介绍

  20世纪初,逐步实现了定量光谱分析。1890年,胡特和德利菲德的研究成果表明,照相底片的黑度与产生映像的曝光量的对数在一定范围内成直线关系,这就是后来的乳剂特性曲线。这一发现为“摄谱法光谱定量分析”准备了条件。德国人格拉赫在1924年经施伐策尔改进了该方法:如果在几年试样中,基体元素的量是恒定的

实验室分析方法定量分析方法的对比分析

1)标准曲线法要求:①A与c是一条直线或近似一条直线关系②测量过程中,要求仪器的工作状态及测量条件保持一致。③样品浓度cx应落在线性范围内④标准溶液与试样组成相似 2)标准对照法要求:①A与c是一条过原点或近似过原点的直线关系:A=a+bc 要求a=0②测量过程中,要求仪器的工作状态及测量条件保持一

原子荧光光谱分析法

物质吸收电磁辐射后受到激发,受激原子或分子以辐射去活化,再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样之后,再发射过程立即停止,这种再发射的光称为荧光;若激发光源停止辐照试样之后,再发射过程还延续一段时间,这种再发射的光称为磷光。荧光和磷光都是光致发光。原子荧光光谱分析法具有很高的

5.1-RNA-光谱分析与定量

采用分光光度法对核酸进行精确定量,因为这种方法不破坏结构,并且还能回收样品.。RNA 有吸收紫外光的性质,吸收高峰在 260nm 波长处,这是单个核糖核甘酸在 256nm 和 281nm 之间吸收值的平均值。试剂、试剂盒DEPC无核酸酶的水仪器、耗材紫外分光光度计石英比色杯实验步骤一、材料与设备1)