实验室分析仪器电感耦合等离子体光源的发展历程

ICP-AES(inductively coupled plasma-atomic emission spectrometry)分析技术发展开始于20世纪60年代,至今已发展成为原子发射光谱分析应用最为广泛的光谱分析技术。关于ICP光源的出现,文献上认为1884年W. Hittorf发现高频感应在真空管内产生的辉光,是等离子放电的最初观察。至1942, Babat才实现了常压下的Ar-ICP放电。但是,具有光谱分析意义的发现,应自1961年T.B.Reed设计的三层同心石英管组成的等离子炬管装置,和从切线方向通入冷却气,得到在大气压下类似火焰形状的高频无极放电装置开始,并预示其作为发射光谱分析光源的可能性。至今常规ICP的炬管与T.B.Reed的装置没什么本质区别,而切线方向进气所产生的涡流效应被称为Reed效应,是实现ICP光源稳定放电的重要条件。1962年美国V.A. Fassel Greenfield首次开始ICP-AES......阅读全文

实验室分析仪器电感耦合等离子体光源的发展历程

ICP-AES(inductively coupled plasma-atomic emission spectrometry)分析技术发展开始于20世纪60年代,至今已发展成为原子发射光谱分析应用最为广泛的光谱分析技术。关于ICP光源的出现,文献上认为1884年W. Hittorf发现高频感应在真

实验室分析仪器电感耦合等离子体光源的光谱特性

一、分析物的原子发射光谱ICP光源中原子发射光谱有两个特点,一是光谱由许多谱线构成,谱线比较复杂,特别是过渡元素、镧系元素和锕系元素;二是离子谱线比较灵敏,强度较高。由于ICP光源有很高的激发温度和较强的电离能力,可以将原子和离子激发到各高能态,产生多条原子谱线和离子谱线,构成较为复杂的原子及离子光

电感耦合等离子体作为光源的优势

电感耦合等离子体(ICP)是由高频电流经感应线圈产生高频电磁场,使工作气体形成等离子体,并呈现火焰状放电(等离子体焰炬),达到10000K的高温,是一个具有良好的蒸发-原子化-激发-电离性能的光谱光源。由于等离子这种体焰炬呈环状结构,有利于从等离子体中心通道进样并维持火焰的稳定;较低的载气流速(低于

实验分析仪器电感耦合等离子体光谱仪光源观察方式

电感耦合等离子体发射光谱仪在光谱仪炬管组件中产生的ICP光源,其观察方式有3种,分别是:垂直观察(Radial)、水平观察(Axial)和双向观察(DUO)垂直观察:又称为径向观察或者测试观察,是采用垂直放置的ICP光谱仪炬管,“火焰”气流方向与采光光路方向垂直;从光谱仪能够接收整个分析区的所有信号

实验室分析仪器电感耦合等离子体特殊装置

一、冷等离子体技术1)“冷”等离子体技术“冷”等离子体技术,主要是通过修改ICP操作参数,降低ICP功率,增大载气流速,加长采样深度,利用较低的等离子体温度降低氩基多原子离子的形成。一般等离子体采用的是1000~1400W功率,0.5~1.0L/min的雾化气流量,而冷等离子体是500~1000W功

实验室分析仪器电感耦合等离子体的物理特性

一、ICP的环形结构及趋肤效应1)环形结构ICP光源优良的分析性能与其环形结构和高频感应电流的趋肤效应有关。观察点燃着的ICP光源可以看到,感应圈中的等离子体呈耀眼的白炽状态,就是涡流区所在的位置。高频感应电流基于磁力线相互作用而使电流在导体中分布是不均匀的,绝大部分电流流经导体的外圈。  2)IC

实验室分析仪器电感耦合等离子体质谱原理概述

高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有三个同轴氩气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作

电感耦合等离子体质谱法

一、内容概述电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometry,缩写为ICP-MS)是20世纪80年代发展起来的新的分析测试技术。它以独特的接口技术将ICP的高温(7000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成的一种新

电感耦合等离子体质谱法

一、内容概述电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometry,缩写为ICP-MS)是20世纪80年代发展起来的新的分析测试技术。它以独特的接口技术将ICP的高温(7000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成的一种新

电感耦合等离子体质谱法

电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometry,简称ICP-MS)是一种先进的分析技术,结合了电感耦合等离子体和质谱技术,可用于快速、准确地测定样品中的元素组成和含量。首先,ICP-MS利用高频电感耦合等离子体产生高温、高能量的等离子

电感耦合等离子体质谱法

一、内容概述电感耦合等离子体质谱法(Inductively Coupled Plasma Mass Spectrometry,缩写为ICP-MS)是20世纪80年代发展起来的新的分析测试技术。它以独特的接口技术将ICP的高温(7000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成的一种新

电感耦合等离子体的形成

 Agilent 7500 ICP-MS使用的是ICP仪器上通用的Fassel型炬管。这种炬管由三个同心石英管组成,每层管路中流经的气体也有所不同。如果最中心的管路使用铂或蓝宝石材质的内插管,则可检测含HF的样品。     炬管的一端深入工作线圈中,工作线圈可以诱导产生用于样品离子化的等离子体。为防

电感耦合等离子体的形成

    ICP的形成就是工作气体的电离过程。为了形成稳定的ICP炬焰需要四个条件:   高频高强度的电磁场  ,工作气体 ,维持气体稳定放电的石英矩管 ,电子离子源     矩管是由直径20mm的三重同心石英管构成。石英外管和中间管之间同10~20L/min的氩气,其作用是作为工作气体形成等离子体并

电感器的发展历程

  最原始的电感器是1831年英国M.法拉第用以发现电磁感应现象的铁芯线圈。1832年美国的J.亨利发表关于自感应现象的论文。人们把电感量的单位称为亨利,简称亨。19世纪中期,电感器在电报、电话等装置中得到实际应用。1887年德国的H.R.赫兹,1890年美国N.特斯拉在实验中所用的电感器都是非常著

实验室分析仪器飞行时间电感耦合等离子体质谱

在TOF-ICP-MS中,根据离子飞行时间进行分离,不同于扫描型质谱根据离子质荷比进行分离。离子从等离子体采样后,加速至相同的动能,使特定质荷比的离子达到检测器的时间固定。受加速过程的影响,不同质荷比的电子在自由漂移区获得的速率不同(较轻的离子获得速率大),因此飞行时间不同。利用离子响应强度及到达检

实验室分析仪器电感耦合等离子体质谱定性分析

定性分析是确定样品中是否存在某个元素或一组元素。仪器能否进行完全定量分析直接与分析方法及仪器检测能力有关。理想状态下,希望只用一个样品溶液同时测定主量、微量、痕量及超痕量元素含量。这就要求仪器对不同元素同位素具有宽的动态响应范围。实际使用过程中,通常难以在一个样品溶液同时测定主量元素(响应强度高)及

实验室分析仪器电感耦合等离子体质谱质谱干扰

ICP-MS中的干扰可分为两大类:“ 质谱干扰”和“非质谱于扰”或称为“基体效应”。质谱干扰是 ICP-MS中见到的最严重的干扰类型,通常对分析物离子流测量结果产生正误差。可进一步分为:同量异位素重叠干扰;多原子离子干扰;难熔氧化物干扰;双电荷离子干扰。第二种类型的干扰大体可分为:抑制和增强效应;由

电感耦合等离子体质谱仪分类

电感耦合等离子体质谱仪分类有多种。1、按分析目的可分:电感耦合等离子体实验室质谱仪和电感耦合等离子体工业质谱仪。2、按结构可分:台式电感耦合等离子体质谱仪和落地式电感耦合等离子体质谱仪。3、按分析规模可分:小型电感耦合等离子体质谱仪和大型电感耦合等离子体质谱仪。4、按分辨率可分:低分辨电感耦合等离子

电感耦合等离子体质谱仪概述

  测定超痕量元素和同位素比值的仪器。由等离子体发生器,雾化室,炬管,四极质谱仪和一个快速通道电子倍增管(称为离子探测器或收集器)组成。其工作原理是:雾化器将溶液样品送入等离子体光源,在高温下汽化,解离出离子化气体,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2

电感耦合高频等离子体(ICP)

电感耦合高频等离子体(ICP)是本世纪60年代提出,70年代获得迅速发展的一种新型的激发光源。等离子体是一种电离度大于0.1%的电离气体,由电子、离子、原子和分子所组成,其正负电荷密度几乎相等。整体呈现中性。通常,它是由高频发生器、等离子炬管和工作气体等三部分组成。高频发生器的作用是产生高频磁场以供

电感耦合等离子体激发源

激发源即ICP光源,是发射光谱仪中一个极为重要的组成部分,它的作用是给分析试样提供蒸发、原子化或离子化激发的能量,使其发射出特征谱线。电感耦合等离子体装置由射频发生器和等离子体炬管组成。图8.4 ICP光谱仪结构图8.2.1.1 射频发生器射频发生器(也称高频发生器)是ICP的高频供电装置,为等离子

实验室分析仪器电感耦合等离子体质谱定量分析

定量分析用于测定样品中组分的精确浓度,准确度高。 ICP-MS在多元素测定中具有很髙灵敏度,能够测得高质量数据。此外, ICP-MS能够进行稳定同位素测试,无需高质量标准物质即可进行准确定量。为使测试结果准确,需排除可能的干扰或采用合适的方法进行校正。因此,定量分析过程必须采用合适方法排除干扰或进行

实验室分析仪器电感耦合等离子体质谱非质谱干扰

一、抑制或增强型干扰空间电荷效应是 ICP-MS中的基体干扰干扰主要原因。通常表现为分析信号的受到抑制或增强。 在等离子体和超声射流中,离子电流被相等的电子流所平衡,因此,整个离子束基本上呈现出电中性。而当离子束离开截取锥后,由透镜建立起的电场将收集离子而排斥电子。以使离子被束缚在一个很窄的离子束中

实验室分析仪器质谱仪电感耦合等离子体离子源原理

利用高温等离子体将分析样品离子化的装置称为电感耦合等离子体离子源,也叫ICP离子源。等离子体是处于电离状态的气体。它是一种由自由电子、离子和中性原子或分子组成的且总体上呈电中性的气体,其内部温度可高达上万摄氏度。电感耦合等离子体离子源就是利用等离子体中的高温使进入该区域的样品离子化电离。ICP离子源

电感耦合等离子体原子/离子荧光光谱激发光源分类

1、 空心阴极灯的强短脉冲供电电源与 DC-HCL 或 CP-HCL 供电电源相比,HCMP-HCL 供电电源需要进行特殊设计,电源要提供微秒宽度的脉冲,峰值工作电流 一般为几安培,大可到十几安培。下图所示为强短脉冲电源示意图。  强短脉冲供电时,HCL 工作在大电流状态,电流一般为几安培,对个别元

电感耦合等离子体质谱仪的用途

测定超痕量元素和同位素比值的仪器。由等离子体发生器,雾化室,炬管,四极质谱仪和一个快速通道电子倍增管(称为离子探测器或收集器)组成。主要用途: 1.痕量及超痕量多元素分析 2.同位素比值分析仪器类别: /仪器仪表 /成份分析仪器 /质谱仪指标信息: 灵敏度:115mbarIn>2×107Cps pp

实验室分析仪器质谱仪器的电感耦合等离子体离子源

电感耦合等离子是通过将射频( radio frequency,RF)发生器产生的能量在电磁场中耦合至等离子支持气所形成的。其中电磁场是通过对负载线圈施加一定RF功率(典型值为700~1500W)而产生。负载线圈是由直径为3mm粗铜管,环绕成2匝或3匝3cm大小的铜环,绕石英炬管安装并将所形成的等离子

实验室分析仪器电感耦合等离子体ICP的形成条件及过程

ICP的形成就是工作气体的电离过程。为了形成稳定的ICP炬焰需要四个条件:高频高强度的电磁场、工作气体、维持气体稳定 放电的石英炬管及电子离子源。具体装置见图。炬管是由直径20mm的三重同心石英管构成。石英外管和中间管之间通10~20/min的氩气,其作用是作为工作气体形成等离子体并冷却石英炬管,称

实验室分析仪器电感耦合等离子体发射光谱仪的维护

1)环境ICP仪器最好安置在一个独立的房间内,仪器四周留有大于0.4米(最好为0.76米)的空间,以便于检查和维修;室内温度保持在20-25℃,温差变化一个工作日内不超过±2℃;湿度范围在8-80(%RH);并且要求无气流影响和无腐蚀性气体、无尘和低湿度,最好使用空调来控制环境。 2)排气ICP仪器

电感耦合等离子体质谱仪是什么

测定超痕量元素和同位素比值的仪器。由等离子体发生器,雾化室,炬管,四极质谱仪和一个快速通道电子倍增管(称为离子探测器或收集器)组成。其工作原理是:雾化器将溶液样品送入等离子体光源,在高温下汽化,解离出离子化气体,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米