超临界流体色谱法简介

超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。 超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由于它具有气相和液相所没有的优点,并能分离和分析气相和液相色谱不能解决的一些对象,应用广泛,发展十分迅速.据Chester估计,至今约有全部分离的25%涉及难以对付的物质,通过超临界流体色谱能取得较为满意的结果.......阅读全文

超临界流体色谱法简介

  超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。  超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由

简介超临界流体色谱法的应用

  SFC可弥补GC和HPLC在分析性能上的某些不足,分离效能和分析速度介于两种色谱方法之间。  SFC可分析不宜用GC分析的一些物质,如强极性、强吸附性、热稳定性差、难挥发的化合物;  它可分析相对分子质量比GC大几个数量级的物质。  SFC可分析HPLC难以检测的各种化合物,如无紫外吸收的各种天

超临界流体色谱法的超临界流体的特性

  超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学

超临界流体色谱法

超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。

超临界流体色谱法

超临界流体色谱法 supercritical fluid chromatography 以超临界流体作为流动相(固定相与液相色谱类似)的色谱方法。超临界流体即为处于临界温度及临界压力以上的流体,它具有对分离十分有利的物化性质,其扩散系数和黏度接近于气体,因此溶质的传质阻力较小,可以获得快速高效的分离

超临界流体色谱法

一、超临界流体色谱的定义使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。二、超临界流体色谱(SFC)的特点SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC方法显

超临界流体色谱法

色谱是用于样品组分分离的一种方法,组分在两相间进行分配,一相为固定相,另一相为流动相。固定相可以是固体或涂于固体上的液体,而流动相可以是气体、液体或超临界流体。超临界流体色谱(Supercritical fluid chromatography) 就是以超临界流体做流动相依靠流动相的溶剂化能力来进行

超临界流体色谱法

一、超临界流体色谱的定义 使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。 二、超临界流体色谱(SFC)的特点 SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC

超临界流体简介

  超临界流体(supercritical fluid)是指温度、压力高于其临界状态的流体,温度与压力都在临界点之上的物质状态。  超临界流体具有许多独特的性质,如粘度、密度、扩散系数、溶剂化能力等性质,对温度和压力变化十分敏感,粘度和扩散系数接近气体,而密度和溶剂化能力接近液体。  纯净物质要根据

超临界流体色谱法的定义

超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。

超临界流体色谱法的分类

  1.根据所用的色谱柱分类  填充柱超临界流体色谱(填充柱)  毛细管超临界流体色谱(毛细管柱)  2.根据色谱过程的用途分类  分析型SFC:主要用于常规的分析  制备型SFC:常用超临界二氧化碳作为流动相。

超临界流体色谱法的特点

  SFC因其超临界流体自身的一些特性 ,使得该方法较气相(GC)和液相(LC)有一定的优势:  1. SFC与GC的比较  SFC可以用比GC更低的温度,从而实现对热不稳定化合物进行有效的分离。由于柱温降低,分离选择性改进,可以分离手性化合物。  由于超临界流体的扩散系数比气体小,因此SFC的谱带

超临界流体的优点简介

  超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体,兼有气体液体的双重性质和优点:  溶解性强  密度接近液体,且比气体大数百倍,由于物质的溶解度与溶剂的密度成正比,因此超临界流体具有与液体溶剂相近的溶解能力。  扩散性能好  因黏度接近于气体,较液体小2个数量级。扩散系数介于气体

关于超临界流体色谱法的流体特性的介绍

  超临界流体具有对于分离极其有利的物理性质。它们的这些性质恰好介于气体和液体之间。超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离。另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质。另外,超临界流体的物理性质和化学

超临界流体色谱法的应用范围

超临界流体色谱法被广泛应用于天然物,药物,表面活性剂,高聚物,多聚物,农药,炸药和火箭推进剂等物质的分离和分析,

毛细管超临界流体色谱法

毛细管超临界流体色谱法 capillary supercritical fluid chromatography,CSFC 使用具有高分离效能的毛细管柱,以超过其临界压力、临界温度的流体作为流动相的色谱法。毛细管柱通常用内径50 ∽100μm的石英交联柱,这种柱必须能耐流体冲洗及压力急剧升降波动的冲

超临界流体色谱法的工作原理

  SFC的流动相:超临界流体(CO2、N2O、NH3等)  SFC的固定相:固体吸附剂(硅胶)或键合到载体(或毛细管壁)上的高聚物;可使用液相色谱的柱填料。  分离机理:吸附与脱附。组分在两相间的分配系数不同而被分离。  压力效应:SFC的柱压降大(比毛细管色谱大30倍),对分离有影响(柱前端与柱

超临界流体色谱法与其他色谱法比较

  (l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0。6cm·S-1时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短。这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间。  (

超临界流体色谱法与其他色谱法比较

(l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0.6cm·S-1时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短.这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间.(2)与气

简介超临界流体的应用原理

  物质在超临界流体中的溶解度,受压力和温度的影响很大.可以利用升温,降压手段(或两者兼用)将超临界流体中所溶解的物质分离析出,达到分离提纯的目的(它兼有精馏和萃取两种作用).例如在高压条件下,使超临界流体与物料接触,物料中的高效成分(即溶质)溶于超临界流体中(即萃取).分离后降低溶有溶质的超临界流

超临界流体色谱仪简介

超临界流体色谱仪(SFC)是以超临界流体作为流动相的色谱仪,是 20 世纪 80 年代发展起来的一种崭新的色谱技术。SFC 具有 GC 和 LC 所没有的优点,并能分离和分析 GC 和 LC 不能解决的一些对象,应用广泛,发展十分迅速。至今约有全部分离的 25% 涉及难以分离的物质,通过 S

超临界多元流体反应精馏简介

  超临界流体反应精馏系把反应与精馏工艺合而为一,其优越性是无庸置疑的,但仍受精馏 自由度的约束较难实现产业化,有关的理、工科科技人员特着手研究开发超临界多元流体反应精馏,首选研究课题是用于对大宗的天然脂肪酸、单体香料及 松节油等生物资源有机物的高压加 氢、 臭氧氧化、固体超强酸催化氧化及酶反应等,

超临界流体色谱仪简介

超临界流体色谱仪(SFC)是以超临界流体作为流动相的色谱仪,是20世纪80年代发展起来的一种崭新的色谱技术。SFC具有GC和LC所没有的优点,并能分离和分析GC和LC不能解决的一些对象,应用广泛,发展十分迅速。至今约有全部分离的25%涉及难以分离的物质,通过SFC能取得较为满意的结果。一、超临界流体

超临界流体色谱超临界流体色谱联用

超临界流体色谱-超临界流体色谱联用(SFC-SFC)的接口也有多通阀切换和无阀气控切换两种方式。1990年Lee用两个多通阀联接,由微填充毛细管柱和毛细管柱组成的超临界流体色谱! 超临界流体色谱联用系统(图11-4-28),并用此系统分析了煤焦油中的多环芳烃。1993年Lee又利用无阀气控切

超临界流体色谱法检测青蒿素

超临界流体色谱(SFC)技术是一种以固体吸附剂(如硅胶)或键合到载体(或毛细管壁)上的高聚物为固定相,以超临界流体为流动相的色谱法。SFC通过控制压力调节流动相的密度实现对被分离物质溶解度的调节,使不同物质分离。超临界流体的溶解能力强,流动性好,传质速率快,使该法具有分析速度快、选择性好、分离效率高

超临界流体萃取技术的原理简介

  超临界流体萃取(SFE,简称超临界萃取)是一种将超临界流体作为萃取剂,把一种成分(萃取物)从混合物(基质)中分离出来的技术。二氧化碳(CO2)是最常用的超临界流体。   超临界流体萃取分离过程的原理是 超临界流体对 脂肪酸、 植物碱、醚类、酮类、 甘油酯等具有特殊溶解作用,利用超临界流体的溶解能

超临界流体萃取分离法简介

超临界流体萃取(SFE),也称气体萃取(gas extraction)、稠密气体萃取(dense gas extraction)或蒸馏萃取(distillation)。由于萃取中的一个重要因素是压力,有效的溶剂萃取过程也可以在非临界状态下实现,因此广义上也称为压力流体萃取(pressure

超临界流体色谱法与其他色谱法的比较点

  (l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0.6cm·S-1时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短.这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间.  (

与其他色谱法比较超临界流体色谱法的优点

(l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0.6cm·S-1时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短.这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间。(2)与气

超临界流体色谱法测定青蒿素含量

超临界流体色谱(SFC)技术是一种以固体吸附剂(如硅胶)或键合到载体(或毛细管壁)上的高聚物为固定相,以超临界流体为流动相的色谱法。SFC通过控制压力调节流动相的密度实现对被分离物质溶解度的调节,使不同物质分离。超临界流体的溶解能力强,流动性好,传质速率快,使该法具有分析速度快、选择性好、分离效率高