超临界流体色谱法的特点
SFC因其超临界流体自身的一些特性 ,使得该方法较气相(GC)和液相(LC)有一定的优势: 1. SFC与GC的比较 SFC可以用比GC更低的温度,从而实现对热不稳定化合物进行有效的分离。由于柱温降低,分离选择性改进,可以分离手性化合物。 由于超临界流体的扩散系数比气体小,因此SFC的谱带展宽比GC的要窄。 SFC溶剂能力强,许多非挥发性组分在SFC中溶解度较大,可分析非挥发性的高分子、生物大分子等样品。 选择性较强,SFC可选用压力程序、温度程序,并可选用不同的流动相或者改性剂,因此操作条件的选择范围较GC更广。 2.SFC与LC的比较 SFC分析时间短,由于超临界流体粘度低,可使其流动速率比高效液相色谱(HPLC)快得多,在最小理论塔板高度下,SFC的流动相速率是HPLC的3-5倍左右,因此分离时间缩短。 SFC总柱效比LC高,毛细管SFC总柱效可高达百万,可分析极其复杂的混合物,而LC的柱效要低得多。当......阅读全文
超临界流体色谱法的特点
SFC因其超临界流体自身的一些特性 ,使得该方法较气相(GC)和液相(LC)有一定的优势: 1. SFC与GC的比较 SFC可以用比GC更低的温度,从而实现对热不稳定化合物进行有效的分离。由于柱温降低,分离选择性改进,可以分离手性化合物。 由于超临界流体的扩散系数比气体小,因此SFC的谱带
超临界流体色谱法的超临界流体的特性
超临界流体具有对于分离极其有利的物理性质.它们的这些性质恰好介于气体和液体之间.超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离.另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质.另外,超临界流体的物理性质和化学
超临界流体色谱法
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。
超临界流体色谱法
色谱是用于样品组分分离的一种方法,组分在两相间进行分配,一相为固定相,另一相为流动相。固定相可以是固体或涂于固体上的液体,而流动相可以是气体、液体或超临界流体。超临界流体色谱(Supercritical fluid chromatography) 就是以超临界流体做流动相依靠流动相的溶剂化能力来进行
超临界流体色谱法
一、超临界流体色谱的定义使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。二、超临界流体色谱(SFC)的特点SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC方法显
超临界流体色谱法
一、超临界流体色谱的定义 使用超过临界温度和临界压力的流体(Supercritical Fluid)作流动相进行分析的色谱法称为超临界流体色谱法。即流动相不是气体、也不是液体,而是单一态的流体。 二、超临界流体色谱(SFC)的特点 SFC方法的产生及其发展,是由它本身的特点所决定的,具有与GC及LC
超临界流体色谱法
超临界流体色谱法 supercritical fluid chromatography 以超临界流体作为流动相(固定相与液相色谱类似)的色谱方法。超临界流体即为处于临界温度及临界压力以上的流体,它具有对分离十分有利的物化性质,其扩散系数和黏度接近于气体,因此溶质的传质阻力较小,可以获得快速高效的分离
超临界流体的特点
超临界流体具有液体和气体的双重特性,有与液体接近的密度,又与气体接近的黏度及高的扩散系数,因此具有很强的溶解能力和良好的流动、传递性能。处于临界温度和临界压力附近的超临界流体密度仅仅是温度和压力的函数,所以在合适的温度和压力下,它能够提供足够的密度来保证足够强的溶解性。
超临界流体色谱法简介
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。 超临界流体色谱技术是20世纪80年代发展起来的一种崭新的色谱技术.由
关于超临界流体萃取技术超临界流体萃取的特点
1)超临界流体 CO2萃取与化学法萃取相比有以下突出的优点: (1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着 药用植物的全部成分,而且能把高沸点,低 挥发度、易 热解的物质在其沸点温度以下萃取出来; (2)使用SFE
超临界流体色谱法的定义
超临界流体色谱法(Supercritical Fluid Chromatography ,SFC)是以超临界流体作为流动相的一种色谱方法·所谓超临界流体,是指既不是气体也不是液体的一些物质,它们的物理性质介于气体和液体之间。
超临界流体色谱法的分类
1.根据所用的色谱柱分类 填充柱超临界流体色谱(填充柱) 毛细管超临界流体色谱(毛细管柱) 2.根据色谱过程的用途分类 分析型SFC:主要用于常规的分析 制备型SFC:常用超临界二氧化碳作为流动相。
超临界流体的特点简述
超临界流体是处于临界温度和临界压力以上,介于气体和液体之间的流体,兼有气体液体的双重性质和优点: 溶解性强 密度接近液体,且比气体大数百倍,由于物质的溶解度与溶剂的密度成正比,因此超临界流体具有与液体溶剂相近的溶解能力。 扩散性能好 因黏度接近于气体,较液体小2个数量级。扩散系数介于气体
关于超临界流体色谱法的流体特性的介绍
超临界流体具有对于分离极其有利的物理性质。它们的这些性质恰好介于气体和液体之间。超临界流体的扩散系数和粘度接近于气相色谱,因此溶质的传质阻力小,可以获得快速高效分离。另一方面,其密度与液相色谱类似,这样就便于在较低温度下分离和分析热不稳定性,相对分子质量大的物质。另外,超临界流体的物理性质和化学
超临界流体色谱法的应用范围
超临界流体色谱法被广泛应用于天然物,药物,表面活性剂,高聚物,多聚物,农药,炸药和火箭推进剂等物质的分离和分析,
简介超临界流体色谱法的应用
SFC可弥补GC和HPLC在分析性能上的某些不足,分离效能和分析速度介于两种色谱方法之间。 SFC可分析不宜用GC分析的一些物质,如强极性、强吸附性、热稳定性差、难挥发的化合物; 它可分析相对分子质量比GC大几个数量级的物质。 SFC可分析HPLC难以检测的各种化合物,如无紫外吸收的各种天
超临界流体色谱法的工作原理
SFC的流动相:超临界流体(CO2、N2O、NH3等) SFC的固定相:固体吸附剂(硅胶)或键合到载体(或毛细管壁)上的高聚物;可使用液相色谱的柱填料。 分离机理:吸附与脱附。组分在两相间的分配系数不同而被分离。 压力效应:SFC的柱压降大(比毛细管色谱大30倍),对分离有影响(柱前端与柱
超临界流体色谱柱的特点
超临界流体色谱柱所具备的特点: 1、采用低粘度的超临界流体作为流动相,可以设置高于液相色谱的方法流速,使分离速度快于液相色谱,效率更高。 2、由于超临界流体的扩散系数介于气体和液体之间,所以峰展宽相比气体流动相更小。 3、不同压力下对样品的溶解能力不同,样品溶解度随超临界流体的密度增加而增加。
毛细管超临界流体色谱法
毛细管超临界流体色谱法 capillary supercritical fluid chromatography,CSFC 使用具有高分离效能的毛细管柱,以超过其临界压力、临界温度的流体作为流动相的色谱法。毛细管柱通常用内径50 ∽100μm的石英交联柱,这种柱必须能耐流体冲洗及压力急剧升降波动的冲
超临界流体色谱法与其他色谱法比较
(l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0。6cm·S-1时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短。这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间。 (
超临界流体色谱法与其他色谱法比较
(l)与高效液相色谱法比较 实验证明SFC法的柱效一般比HPLC法要高:当平均线速度为0.6cm·S-1时,SFC法的柱效可为HPLC法的3倍左右,在最小板高下载气线速度是4倍左右;因此SFC法的分离时间也比HPLC法短.这是由于流体的低粘度使其流动速度比HPLC法快,有利于缩短分离时间.(2)与气
超临界流体技术优势特点
⑴超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来;⑵使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质
超临界流体萃取技术特点分析
所谓超临界流体萃取技术,是指利用一种超临界流体作为萃取剂,将待萃取物质从混合物之中分离出来的萃取技术。在常见的超临界流体萃取工作中,较常被使用的超临界流体有二氧化碳、氨气、水蒸气、甲醇等物质。因为二氧化碳具有无毒、不易燃、节能、处理温度低、选择性强、溶剂可再次使用等特点,其在工业中实际应用较
关于超临界流体技术的特点介绍
一、超临界流体技术的基本概念: 将超临界流体应用于生产生活中的各个领域,如节能、天然产物萃取、聚合反应、超微粉和纤维的生产,喷料和涂料、催化过程和超临界色谱等来获得一定特性的产品,称为超临界流体技术。 [5] 二、超临界流体技术的特点: 超临界流体具有液体和气体的双重特性,有与液体接近的密
超临界流体萃取技术的技术特点
1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,
超临界流体萃取技术的技术特点
1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,
超临界流体萃取技术的技术特点
1)超临界流体CO2萃取与化学法萃取相比有以下突出的优点:(1)可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的全部成分,而且能把高沸点,低挥发度、易热解的物质在其沸点温度以下萃取出来;(2)使用SFE是最干净的提取方法,
超临界流体萃取的原理和特点
超临界流体萃取是一种新型萃取分离技术。它利用超临界流体,即处于温度高于临界温度、压力高于临界压力的热力学状态的流体作为萃取剂。从液体或固体中萃取出特定成分,以达到分离目的。超临界流体萃取的特点是: 萃取剂在常压和室温下为气体,萃取后易与萃余相和萃取组分离; 在较低盈度下操作,特别适合于天然物质的分离
超临界流体色谱超临界流体色谱联用
超临界流体色谱-超临界流体色谱联用(SFC-SFC)的接口也有多通阀切换和无阀气控切换两种方式。1990年Lee用两个多通阀联接,由微填充毛细管柱和毛细管柱组成的超临界流体色谱! 超临界流体色谱联用系统(图11-4-28),并用此系统分析了煤焦油中的多环芳烃。1993年Lee又利用无阀气控切
超临界流体色谱法检测青蒿素
超临界流体色谱(SFC)技术是一种以固体吸附剂(如硅胶)或键合到载体(或毛细管壁)上的高聚物为固定相,以超临界流体为流动相的色谱法。SFC通过控制压力调节流动相的密度实现对被分离物质溶解度的调节,使不同物质分离。超临界流体的溶解能力强,流动性好,传质速率快,使该法具有分析速度快、选择性好、分离效率高