概述脱氧核糖核酸的分子结构

DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5-甲基胞嘧啶特别丰富。在某些噬菌体中,5-羟甲基胞嘧啶取代了胞嘧啶。40年代后期,查加夫(E.Chargaff)发现不同物种DNA的碱基组成比例不同,但其中的腺嘌呤数等于其胸腺嘧啶数(A=T),鸟嘌呤数等于胞嘧啶数(G=C),因而嘌呤数之和等于嘧啶数之和,一般用几个层次描绘DNA的结构。......阅读全文

概述脱氧核糖核酸的分子结构

  DNA是由许多脱氧核苷酸按一定碱基顺序彼此用3’,5’-磷酸二酯键相连构成的长链。大多数DNA含有两条这样的长链,也有的DNA为单链,如大肠杆菌噬菌体φX174、G4、M13等。DNA有环形DNA和链状DNA之分。在某些类型的DNA中,5-甲基胞嘧啶可在一定限度内取代胞嘧啶,其中小麦胚DNA的5

概述乙烯的分子结构

  分子式:C2H4  结构简式::CH2=CH2  最简式:CH2。  乙烯有4个氢原子的约束,碳原子之间以双键连接。所有6个原子组成的乙烯是共面。H-C-C角是121.3°;H-C-H角是117.4 °,接近120 °,为理想sp2混成轨域。这种分子也比较僵硬:旋转C=C键是一个高吸热过程,需要

脱氧核糖核酸分子结构的三级结构介绍

  是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。如H-DNA或R-环等三级结构。DNA的三级结构是指DNA进一步扭曲盘绕所形成的特定空间结构,也称为超螺旋结构。DNA的超螺旋结构可分为正、负超螺旋两大类,并可互相转变。超螺旋是克服张力而形成的。当DNA双螺旋分子在溶液中以一定构象

脱氧核糖核酸的分子结构二级结构的介绍

  是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。DNA的二级结构分为两大类:一类是右手螺旋,如A-DNA、B-DNA、C-DNA、D-DNA等;另一类是左手双螺旋,如Z-DNA。詹姆斯·沃森与佛朗西斯·克里克所发现的双螺旋,是称为B型的水结合型DNA,在细胞中最为常见。也有的DNA为单链,

脱氧核糖核酸的分子结构一级结构的介绍

  是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3',5'-磷酸二酯键彼此连接起来的线形多聚体,以及其基本单位-脱氧核糖核苷酸的排列顺序。  每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。核酸的含氮碱基又可分为四类:

脱氧核糖核酸的背景及概述

  核酸的一类。是多数生物的遗传物质,因分子中含有脱氧核糖而得名。脱氧核糖核酸是以核苷酸为单位聚合而成的高分子化合物。核苷酸由五碳糖、磷酸和碱基3种成分组成。脱氧核糖核酸的碱基共有下列4种:腺嘌呤(A);鸟嘌呤(G);胸腺嘧啶(T);胞嘧啶(C)。核苷酸的差别在于所含碱基的不同。所以构成脱氧核糖核酸

概述脱氧核糖核酸DNA的生物功能

  在基因组中,遗传信息存储在称为基因的DNA序列中,这个遗传信息的传递由互补的含氮碱基序列的存在得到保证。事实上,在转录过程中,遗传信息可以很容易地被转录到互补的RNA链中(mRNA)。mRNA通过翻译合成蛋白质。或者,细胞可以通过称为DNA复制的过程简单地复制遗传信息。

概述脱氧核糖核酸的超速离心方式

  近代质粒DNA分离纯化以从大肠杆菌中分离为代表,鉴于大肠杆菌(E.coli)在分子生物学研究中的重要地位,从大肠杆菌(E.coli)中分离纯化质粒DNA(Plasmid DNA)成为超离心技术中一个重要课题。而质粒DNA的快速分离纯化又对超离心设备(超速离心机、转头和附属设备)提出了更高要求。 

概述磷酸肌酸的分子结构数据

  一、分子结构数据  1、 摩尔折射率:40.83  2、 摩尔体积(cm3/mol):115.2  3、 等张比容(90.2K):362.9  4、 表面张力(dyne/cm):98.3  5、 极化率(10-24 cm3):16.18  二、物化性质  密度:1.83 g/cm3  沸点:44

概述脱氧核糖核酸DNA与蛋白质作用

  所有DNA功能都取决于其与特定蛋白质的相互作用。这些相互作用可以是非特异性的,也可以是极其特异性的。还有许多可以结合DNA的酶,其中,在DNA转录和复制中复制DNA序列的聚合酶特别重要。  DNA与组织蛋白(图1中白色部分)的交互作用,这种蛋白质中  的碱性氨基酸(左下蓝色),可与DNA上的酸性

脱氧核糖核酸的结构

一级结构DNA的一级结构,是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA的一级结构决定其高级结构,如B-DNA中多G-C区易形成左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发夹结构等。这些高级结构又决定和影响着一级结构的功能。 二级结构DNA的二级结构是指两条多

脱氧核糖核酸的简介

  脱氧核糖核酸(缩写:DNA),[1]是生物细胞内含有的四种生物大分子之一核酸的一种。  DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。  DNA由脱氧核苷酸组成的大分子聚合物。脱氧核苷酸由碱基、脱氧核糖和磷酸构成。其中碱基有4种:腺嘌呤(A)、鸟嘌呤

脱氧核糖核酸的功能

脱氧核糖核酸(英文DeoxyriboNucleic Acid,缩写为DNA)是生物细胞内含有的四种生物大分子之一核酸的一种。DNA携带有合成RNA和蛋白质所必需的遗传信息,是生物体发育和正常运作必不可少的生物大分子。

脱氧核糖核酸的结构

 一级结构DNA的一级结构,是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA的一级结构决定其高级结构,如B-DNA中多G-C区易形成左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发夹结构等。这些高级结构又决定和影响着一级结构的功能。二级结构DNA的二级结构是指两条多

脱氧核糖核酸的组成

DNA是由重复的核苷酸单元组成的长聚合物,链宽2.2到2.6纳米,每个核苷酸单体长度为0.33纳米。尽管每个单体占据相当小的空间,但DNA聚合物的长度可以非常长,因为每个链可以有数百万个核苷酸。例如,最大的人类染色体(1号染色体)含有近2.5亿个碱基对 [12]  。生物体中的DNA几乎从不作为单链

腺苷的分子结构

摩尔折射率:59.95摩尔体积(cm3/mol):128.1等张比容(90.2K):412.8表面张力(dyne/cm):107.6极化率(10-24cm3):23.76

乙醛的分子结构

甲基的C原子以sp3杂化轨道成键、醛基的C原子以sp2杂化轨道成键,分子为极性分子。分子结构数据1、摩尔折射率:11.502、摩尔体积(cm3/mol):58.83、等张比容(90.2K):120.64、表面张力(dyne/cm):17.65、极化率(10-24cm3):4.55

键角的分子结构

键角是共价键方向性的反映,与分子的形状(空间构型)有密切联系。例如,水分子中两个H—O键之间的夹角是104.5°,这就决定了水分子的角形结构。一般知道一个三原子分子中键长和键角的数值,就能确定这个分子的空间构型。二氧化碳分子中C—O键长是116pm,两个C—O键的夹角是180°,二氧化碳是直线型分子

MHC的分子结构

1. MHC-I类分子所有I类分子都包含有两条不相连的多肽链:一条为MHC编码的α链或称重链,人类约44X103,小鼠约为47X103;另一条为独立染色体基因编码的β链(β2-微球蛋白),人类和小鼠均为12X103。α链由一个约40X103的核心多肽链形成,N端连有一个(人类)或两个(小鼠)寡糖,α

乙酸的分子结构

1、摩尔折射率:12.872、摩尔体积(cm3/mol):56.13、等张比容(90.2 K):133.54、表面张力(dyne/cm):31.9乙酸的分子结构图5、极化率(10-24 cm3):5.10乙酸的晶体结构显示 ,分子间通过氢键结合为二聚体(亦称二缔结物),二聚体也存在于120℃的蒸汽状

乙烯的分子结构

分子结构分子式:C2H4结构简式::CH2=CH2最简式:CH2。乙烯有4个氢原子的约束,碳原子之间以双键连接。所有6个原子组成的乙烯是共面。H-C-C角是121.3°;H-C-H角是117.4 °,接近120 °,为理想sp2混成轨域。这种分子也比较僵硬:旋转C=C键是一个高吸热过程,需要打破π键

阿洛酮糖的分子结构

摩尔折射率:37.42摩尔体积(m/mol):113.3等张比容(90.2K):351.7表面张力(dyne/cm):92.6极化率(10cm):14.83

脱氧核糖核酸的主要类别

单链DNA单链DNA(single-stranded DNA)大部分DNA以双螺旋结构存在,但一经热或碱处理就会变为单链状态。单链DNA就是指以这种状态存在的DNA。单链DNA在分子流体力学性质、吸收光谱、碱基反应性质等方面都和双链DNA不同。某些噬菌体粒子内含有单链环状的DNA,这样的噬菌体DNA

脱氧核糖核酸的研究历史

DNA最初是由瑞士生物化学家弗里德里希·米歇尔(Friedrich Miescher)1869年从手术绷带的脓液中分离出来的,由于这种微观物质位于细胞核中,当时被称为核蛋白(nuclein) 。1919年,Phoebus Levene确定了DNA由含氮碱基,糖和磷酸盐组成的核苷酸结成  。Leven

脱氧核糖核酸的生物功能

在基因组中,遗传信息存储在称为基因的DNA序列中,这个遗传信息的传递由互补的含氮碱基序列的存在得到保证。事实上,在转录过程中,遗传信息可以很容易地被转录到互补的RNA链中(mRNA)。mRNA通过翻译合成蛋白质。或者,细胞可以通过称为DNA复制的过程简单地复制遗传信息。基因组结构真核生物基因组DNA

脱氧核糖核酸的研究历史

DNA最初是由瑞士生物化学家弗里德里希·米歇尔(Friedrich Miescher)1869年从手术绷带的脓液中分离出来的,由于这种微观物质位于细胞核中,当时被称为核蛋白(nuclein) 。1919年,Phoebus Levene确定了DNA由含氮碱基,糖和磷酸盐组成的核苷酸结成  。Leven

脱氧核糖核酸的物质结构

  脱氧核糖核酸(Deoxyribonucleic acid,DNA),又称去氧核糖核酸,是染色体的主要成分,是基因的物质基础。  DNA的结构:DNA最重要的特征是碱基序列,由四种脱氧核糖核苷酸排列成长链,两条长链互绕而成稳定结构,进而再有其他卷曲和结构。因此,人类按层次把DNA的结构划分为一级结

脱氧核糖核酸的生物功能

在基因组中,遗传信息存储在称为基因的DNA序列中,这个遗传信息的传递由互补的含氮碱基序列的存在得到保证。事实上,在转录过程中,遗传信息可以很容易地被转录到互补的RNA链中(mRNA)。mRNA通过翻译合成蛋白质。或者,细胞可以通过称为DNA复制的过程简单地复制遗传信息。基因组结构真核生物基因组DNA

脱氧核糖核酸的理化特性

DNA是高分子聚合物,其溶液为高分子溶液,具有很高的粘度,可被甲基绿染成绿色。DNA对紫外线(260nm)有吸收作用,利用这一特性,可以对DNA进行含量测定。当核酸变性时,吸光度升高,称为增色效应;当变性核酸重新复性时,吸光度又会恢复到原来的水平。较高温度、有机溶剂、酸碱试剂、尿素、酰胺等都可以引起

脱氧核糖核酸的结构介绍

一级结构DNA的一级结构,是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。DNA的一级结构决定其高级结构,如B-DNA中多G-C区易形成左手螺旋DNA(Z-DNA),而反向重复的DNA片段易出现发夹结构等。这些高级结构又决定和影响着一级结构的功能。二级结构DNA的二级结构是指两条多核