关于载体蛋白的作用过程介绍

载体蛋白在膜的一侧与离子特异性地结合,形成不稳定载体--离子复合物,然后在膜的另一侧把离子释放出来,而载体又回到原来一侧.细胞膜上一定的蛋白质,可以使一定的离子通过。例如,用人工膜进行实验时,在一般情况下,钾离子不能从高浓度的一侧穿过人工的脂质双层膜(磷脂双分子层),扩散到低浓度的一侧。但是,如果在这脂质双层膜上,加入少量的缬氨霉素(一种抗生素),则钾离子便可以通过,而其他离子不能。这是由于缬氨霉素与钾离子有特异的亲和力,并且在这种蛋白质结构内部有适合该离子的通道。细胞膜上的这种蛋白质叫做离子载体。缬氨霉素就是钾离子载体。葡萄糖进入红细胞,是因为在红细胞上有一种蛋白质,它与被运输物质葡萄糖有特异的亲和力,当这种蛋白质与葡萄糖结合时,引起了它的构象变化,从而使葡萄糖通过细胞膜而进入细胞。 糖、氨基酸,核苷酸等水溶性小分子一般由载体蛋白运载。少数情况下也可能载体与被转运分子的复合物发生180°旋转,从而把该分子送到膜的另一侧。......阅读全文

关于载体蛋白的作用过程介绍

  载体蛋白在膜的一侧与离子特异性地结合,形成不稳定载体--离子复合物,然后在膜的另一侧把离子释放出来,而载体又回到原来一侧.细胞膜上一定的蛋白质,可以使一定的离子通过。例如,用人工膜进行实验时,在一般情况下,钾离子不能从高浓度的一侧穿过人工的脂质双层膜(磷脂双分子层),扩散到低浓度的一侧。但是,如

简述载体蛋白的作用过程

  载体蛋白在膜的一侧与离子特异性地结合,形成不稳定载体--离子复合物,然后在膜的另一侧把离子释放出来,而载体又回到原来一侧.细胞膜上一定的蛋白质,可以使一定的离子通过。例如,用人工膜进行实验时,在一般情况下,钾离子不能从高浓度的一侧穿过人工的脂质双层膜(磷脂双分子层),扩散到低浓度的一侧。但是,如

关于载体蛋白的相关介绍

  载体蛋白又称做载体(carrier)、通透酶(permease)或转运器(transporter)。能够与特异性溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧  载体蛋白,是多回旋折叠的跨膜蛋白质,它与被传递的分子特异结合使其越过质膜。其机制是载体蛋白分子的构象可逆地变化,与被转

关于载体蛋白的特点介绍

  载体蛋白运输物质的动力学曲线具有“膜结合酶”的特征,运输速度在一定浓度时达到饱和。但载体蛋白不是酶,它与被运载分子不是共价结合,此外它不仅加快运输速度,也增大物质透过质膜的量。载体蛋白与运载分子有特异的结合位点,能被竞争性抑制物占据,非竞争性抑制物亦可与载体蛋白在结合位点之外结合,改变其构象,阻

关于载体蛋白的特点的介绍

  载体蛋白运输物质的动力学曲线具有“膜结合酶”的特征,运输速度在一定浓度时达到饱和。但载体蛋白不是酶,它与被运载分子不是共价结合,此外它不仅加快运输速度,也增大物质透过质膜的量。载体蛋白与运载分子有特异的结合位点,能被竞争性抑制物占据,非竞争性抑制物亦可与载体蛋白在结合位点之外结合,改变其构象,阻

关于载体蛋白的基本信息介绍

  载体蛋白又称做载体(carrier)、通透酶(permease)或转运器(transporter)。能够与特异性溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧  载体蛋白,是多回旋折叠的跨膜蛋白质,它与被传递的分子特异结合使其越过质膜。其机制是载体蛋白分子的构象可逆地变化,与被转

关于酰基载体蛋白的定义介绍

  酰基载体蛋白(acyl carrier protein,ACP)是分子量9X103-10X 103的可溶酸性蛋白质,其辅基为4' -酸泛酰巯基乙胺。 4' -酸端与ACP中丝氨酸残基借矶酸酯键相连,另一端的-SH自由基与脂酰基间形成硫酯键,借以携带合成的脂酰基从一个酶转移到另一个

关于酰基载体蛋白的基本介绍

  酰基载体蛋白(acyl carrier protein,一般缩写为ACP)是一类具有保守丝氨酸残基的小分子量(9 KDa)酸性蛋白,在脂肪酸合成过程中,ACP携带酰基链完成缩合、还原和脱氢等酶促反应。它是不同酰基链长度脂肪酸的acyl-ACP去饱和反应和质体类酰基转移酶作用的辅助因子。

简述酰基载体蛋白的作用

  酰基载体蛋白是脂肪酸合成中的关键蛋白质,位于脂肪酸合成酶系的中央,作为脂酰基的载体将脂酰基从一个酶反应转移到另一个酶反应。ACP 不仅参与脂肪酸合成,还参与甲羟戊酸合成及脂肪酸的不饱和反应。植物贮藏脂肪酸中不饱和脂肪酸的含量、组成以及它们在总脂肪酸中所占比例,与 ACP 异构体的种类及差异表达有

关于糖异生作用的过程介绍

  1、凡是能生成草酰乙酸的物质都可以变成葡萄糖。例如三羧酸循环的中间物,柠檬酸、异柠檬酸、α-酮戊二酸、琥珀酸、延胡索酸和苹果酸都可以转变成草酰乙酸而进入糖异生途径。  2、大多数氨基酸是生糖氨基酸如丙氨酸、谷氨酸、天冬氨酸、丝氨酸、半胱氨酸、甘氨酸、精氨酸、组氨酸、苏氨酸、脯氨酸、谷胺酰胺、天冬

关于慢病毒载体的包膜蛋白介绍

  采用表达水疱性口炎病毒(VSV)糖蛋白G的质粒和双嗜性小鼠白血病病毒(MLV)包膜蛋白Env的质粒,分别取代表达HIV本身包膜蛋白Env的质粒,使HIV-1载体颗粒包上了VSV或双嗜性MLV的 包膜。这样做的结果至少具有三个方面的积极意义:  ①包膜的更换进一步降低了慢病毒载体恢复成野生型病毒的

克隆载体的功能作用及常见的载体介绍

克隆载体通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的 外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒、噬菌粒、酵母人工染色体。

关于锌指蛋白的作用介绍

  定义  通常由一系列锌指组成。 具有重复结构的氨基酸模式,相隔特定距离的胱氨酸结合锌指,能与某些RNA/DNA 结合。  作用  锌指蛋白是一类具有手指状结构域的转录因子,对基因调控起重要的作用。根据其保守结构域的不同,可将锌指蛋白主要分为C2H2型、C4型和C6型。锌指通过与靶分子DNA、RN

关于脂蛋白的作用介绍

  可溶性脂蛋白即血浆脂蛋白在动物体内脂质的运输方面起重要作用,脂蛋白中的脂质还能与细胞膜的组分相互交换,参与细胞脂质代谢的调节;此外,血浆脂蛋白与动脉粥样硬化型心血管疾病之间有密切关系,低脂蛋白血和高脂蛋白血也都是血浆脂蛋白异常的疾病。不溶性脂蛋白是各种生物膜(如细胞膜、细胞器膜)的主要组成成分。

转染过程中载体蛋白对于目的蛋白是否有影响

转染后Western检测不到高表达量的目的蛋白有很多原因首先就是抗体是否合适需检测的目的蛋白,可以考虑更换其他抗体然后转染可以是瞬时转染,也可以是稳定细胞株转染假如是瞬时转染检测不到,可能就是抗体或者Western操作的问题假如是稳定细胞株转染检测不到,可能是目的基因没有稳定整合到基因组中,或者插入

载体蛋白介导的易化扩散介绍

运输过程是通过载体蛋白发生可逆的构象变化实现的。载体蛋白是膜上与物质运输有关的穿膜蛋白,对所运输的物质具有高度选择性,当载体蛋白一端表面的特异结合部位与专一的溶质分子结合,引发载体蛋白空间构象改变,将运送的溶质分子从结合的一侧转运到膜的另一侧;变构的载体蛋白对被转运物质的亲和力同时发生改变,于是被转

关于脑脊液蛋白的检查过程介绍

  一、脑脊液蛋白的注意事项:  不合宜人群:其他高发病症,不属于这项检查。  检查前禁忌:避免吃糖和加工食物。  检查时要求:保持轻松状态,配合医生。  二、脑脊液蛋白检查过程:潘氏试验所需标本量少,灵敏度高,试剂易得,操作简便,结果易于观察,其沉淀多少与蛋白质含量成正经比,部分正常脑脊液亦可出现

关于活载体病毒蛋白疫苗的简介

  将编码病毒蛋白的基因插入其他活病毒或细胞基因组中并用之感染动物或人体,使外源基因在宿主细胞表达,可产生对基因产物及载体的免疫应答。活病毒载体包括痘苗病毒、杆状病毒和腺病毒等。研究较多的是痘病毒疫苗。痘病毒疫苗在感染宿主细胞胞浆中复制,无致癌性,此类疫苗可诱导机体产生细胞免疫和体液免疫且疫苗易于生

关于泛素载体蛋白质的简介

  泛素载体蛋白是指一种在泛素参与的短半寿期蛋白质降解过程中,介导泛素与被降解蛋白质连接的蛋白质。蛋白质在胃液消化酶的作用下,初步水解,在小肠中完成整个消化吸收过程。氨基酸的吸收通过小肠黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。  除了遗传密码所编码的20种基本氨基酸,在蛋白质

关于脂蛋白的基本作用介绍

  可溶性脂蛋白即血浆脂蛋白在动物体内脂质的运输方面起重要作用,脂蛋白中的脂质还能与细胞膜的组分相互交换,参与细胞脂质代谢的调节;此外,血浆脂蛋白与动脉粥样硬化型心血管疾病之间有密切关系,低脂蛋白血和高脂蛋白血也都是血浆脂蛋白异常的疾病。不溶性脂蛋白是各种生物膜(如细胞膜、细胞器膜)的主要组成成分。

关于波形蛋白的作用介绍

  波形蛋白的动态性质对细胞的灵活性非常重要。在试管的压力测试中发现,波形蛋白能提供微管及肌动蛋白所没有的弹性,因此波形蛋白是负责维持细胞骨架的完整性。另外,在没有波形蛋白的细胞受到微少的针刺,会出现严重的伤害。在剔除波形蛋白基因的实验老鼠中,虽然它们有著正常的机能,但微管网却因失去波形蛋白而受损。

关于组蛋白修饰的作用介绍

  最新研究结果显示:球形组蛋白修饰模式可预测低分级前列腺癌的复发危险。结果发表在《自然》杂志上。该研究第一作者加利福尼亚大学的Siavash K. Kurdistani表示:这种修饰模式最终可作为前列腺或其他类型癌症的预后或诊断指标,也可作为预测何种患者会对一类组蛋白去乙酰酶抑制剂新药产生反应的指

关于白蛋白多肽的作用介绍

  (1)对肝脏具有恢复作用。白蛋白合成需要肝脏,对于白蛋白来源不足,肝功能受损是一种负担,补充白蛋白多肽,直接参与机体组织的生物化学过程,无须肝脏参与,并恢复肝脏功能。  (2)营养调节作用:鸡卵清蛋白和人血清蛋白的氨基酸组成比例非常相似,含人体所需的所有氨基酸,白蛋白多肽含有人体所需的20种氨基

关于慢病毒载体的介绍

  慢病毒载体(Lentiviral vector)较逆转录病毒载体有更广的宿主范围,慢病毒能够有效感染非周期性和有丝分裂后的细胞。慢病毒载体能够产生表达shRNA的高滴度的慢病毒,在周期性和非周期性细胞、干细胞、受精卵以及分化的后代细胞中表达shRNA,实现在多种类型的细胞和转基因小鼠中特异而稳定

关于质粒载体的基本介绍

  质粒是小型环状DNA分子,在基因工程中作为最常用,最简单的载体,必须包括三部分:遗传标记基因,复制区,目的基因。 质粒在所有的细菌类群中都可发现,它们是独立于细菌染色体外自我复制的DNA分子。自然界中,质粒是在营养充足时出现的,它在结构、大小、复制方式,每个细菌的拷贝数,在不同的细菌体内的繁殖力

关于病毒载体的基本介绍

  病毒载体可将遗传物质带入细胞,原理是利用病毒具有传送其基因组进入其他细胞,进行感染的分子机制。可发生于完整活体(in vivo)或是细胞培养(in vitro)中。可应用于基础研究、基因疗法或疫苗。

关于质粒载体的分类介绍

  按复制形式  分为严紧型和松弛型复制。  根据质粒DNA复制与宿主之间的关系或在宿主细胞的拷贝数的多少,可以将质粒分为两种不同的复制类型:严紧型和松弛型。严紧型质粒复制受宿主染色体DNA复制的严格控制,拷贝数较小一般只有1~3个拷贝。疏松型质粒的复制宿主的控制比较松,在宿主中的拷贝数比较多,一般

关于表达载体的组成介绍

  常用细菌质粒进行构建,构建过程中运用限制性核酸内切酶切割出与目的基因相合的末端(多为黏性末端,也有平末端),采用DNA连接酶连接,导入生物体实现表达。标记基因可帮助识别质粒并检测是否成功整合到染色体DNA中。  表达载体(Expression vectors)就是在克隆载体基本骨架的基础上增加表

蛋白芯片技术的常用载体介绍

常用的材质有玻片、硅、云母及各种膜片等。理想的载体表面是渗透滤膜(如硝酸纤维素膜)或包被了不同试剂(如多聚赖氨酸)的载玻片。外形可制成各种不同的形状。Lin,SR等人引采用APTS-BS3技术增强芯片与蛋白质的结合。

关于蛋白质代谢的消化过程介绍

  外源蛋白有抗原性,需降解为氨基酸才能被吸收利用。只有婴儿可直接吸收乳汁中的抗体。可分为以下两步:  1、胃中的消化:胃分泌的盐酸可使蛋白变性,容易消化,还可激活胃蛋白酶,保持其最适pH,并能杀菌。胃蛋白酶可自催化激活,分解蛋白产生蛋白胨。胃的消化作用很重要,但不是必须的,胃全切除的人仍可消化蛋白