胞化学基础氢键的键能数据
氢键的结合能是2—8千卡(Kcal)。氢键是一种比分子间作用力(范德华力)稍强,比共价键和离子键弱很多的相互作用。其稳定性弱于共价键和离子键。常见氢键的平均键能与键长数据为:常见氢键的平均键能与键长 ......阅读全文
胞化学基础氢键的键能数据
氢键的结合能是2—8千卡(Kcal)。氢键是一种比分子间作用力(范德华力)稍强,比共价键和离子键弱很多的相互作用。其稳定性弱于共价键和离子键。常见氢键的平均键能与键长数据为:常见氢键的平均键能与键长
胞化学基础氢键
氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。[X与Y可以是同一种类分子,如水分子之间的氢键;也可以是不同种类分子,如一水合氨分子(NH3·H2O)之间的氢键]。
胞化学基础氢键的分类
同种分子之间现以HF为例说明氢键的形成。在HF分子中,由于F的电负性(4.0)很大,共用电子对强烈偏向F原子一边,而H原子核外只有一个电子,其电子云向F原子偏移的结果,使得它几乎要呈质子状态。这个半径很小、无内层电子的带部分正电荷的氢原子,使附近另一个HF分子中含有负电子对并带部分负电荷的F原子有可
胞化学基础氢键的影响作用
氢键对化合物熔点和沸点的影响分子间形成氢键时,化合物的熔点、沸点显著升高。HF和H2O等第二周期元素的氢化物,由于分子间氢键的存在,要使其固体熔化或液体气化,必须给予额外的能量破坏分子间的氢键,所以它们的熔点、沸点均高于各自同族的氢化物。值得注意的是,能够形成分子内氢键的物质,其分子间氢键的形成将被
胞化学基础氢键的形成过程
氢键通常可用X-H…Y来表示。其中X以共价键(或离子键)与氢相连,具有较高的电负性,可以稳定负电荷,因此氢易解离,具有酸性(质子给予体)。而Y则具有较高的电子密度,一般是含有孤对电子的原子,容易吸引氢质子,从而与X和H原子形成三中心四电子键。成键原子典型的氢键中,X和Y是电负性很强的F、N和O原子。
胞化学基础氢键的理化特性
氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些晶态甚至气态物质之中。例如在气态、液态和固态的HF中都有氢键存在。能够形成氢键的物质是很多的,如水、水合物、氨合物、无机酸和某些有机化合物。氢键的存在,影响到物质的某些性质。熔沸点分子间有氢键的物质熔化或气化时,除了要克服纯粹的分子间力外,
胞化学基础氢键的形成条件
在蛋白质的a-螺旋的情况下是N-H…O型的氢键,DNA的双螺旋情况下是N-H…O,N-H…N型的氢键,因为这些结构是稳定的,所以这样的氢键很多。此外,水和其他溶媒是异质的,也由于在水分子间生成O-H—…O型氢键。因此,这也就成为疏水结合形成的原因。(1) 存在与电负性很大的原子A 形成强极性键的氢原
胞化学基础二硫键的还原反应
二硫键最重要的一个特性就是它在还原剂作用下的裂解。使二硫键裂解的还原剂较多。在生物化学中,常用的还原剂有硫醇如β-硫基乙醇(β-mercaptoethanol,β-ME)或二硫苏糖醇(DTT)。通常要使用过量硫醇试剂保证二硫键的完全裂解。其它还原剂还有三羟甲基氨基甲烷磷化氢液[ tris(2-car
胞化学基础氢键与分子间作用力概念辨析
关于氢键,论坛争论最多的在于不同笔者对氢键与分子间作用力从属关系的争论。传统定义,将分子间作用力定义为:“分子的永久偶极和瞬间偶极引起的弱静电相互作用”。随着研究的深入,发现了许多用现有分子间作用力的作用机理无法说明的现象。比如卤键,有机汞卤化物时观察到分子内卤素原子与汞原子之间存在长距离弱的共价相
化学键能数据库iBonD在京发布
3月15日,清华大学基础分子科学中心和南开大学元素有机化学国家重点实验室程津培教授研究组在京发布了国际上首个涵盖全面、数据可靠、使用快捷方便、专业权威的网络版化学键能数据库iBonD1.0版。 键能是化学领域中最基础参数之一,因该参数直接反映出化合物的稳定性以及判断化学反应是否能发生,从而成为
胞化学基础亲水基
亲水基又称亲水基团、疏油基团,具有溶于水,或容易与水亲和的原子团。可能吸引水分子或溶解于水,这类分子形成的固体表面易被水润湿。
细胞化学基础疏水键
疏水键是多肽链上的某些氨基酸的疏水基团或疏水侧链(非极性侧链),由于避开水而造成相互接近、粘附聚集在一起。它在维持蛋白质三级结构方面占有突出地位。
细胞化学基础疏水键的作用
蛋白质分子中许多氨基酸的疏水侧链有形成疏水键的倾向,由于疏水效应,这些疏水残基常被水驱入蛋白质分子内总聚集成簇,带动肽链盘曲折叠,对蛋白质三、四级结构的形成和稳定起重要作用。
细胞化学基础二硫键简介
二硫键(disulfide bond) 是连接不同肽链或同一肽链中,两个不同半胱氨酸残基的巯基的化学键。二硫键是比较稳定的共价键,在蛋白质分子中,起着稳定肽链空间结构的作用。二硫键数目越多,蛋白质分子对抗外界因素影响的稳定性就愈大。
细胞化学基础二硫键的功能
二硫键与蛋白质高级结构的生物活性有关,同时与蛋白质的复性也有关联。如核糖核酸酶A经巯基乙醇(还原剂)和尿素(蛋白质变性剂)处理后,发生变性作用,4对二硫键断裂,多肽链伸展开来,高级结构发生变化,失去生物活性。如果用透析法将大量还原剂和变性剂除去,在微量还原剂存在下,4对二硫键在原来的位置重新形成,伸
细胞化学基础腺苷计算化学数据
疏水参数计算参考值(XlogP):无氢键供体数量:4氢键受体数量:8可旋转化学键数量:2互变异构体数量:3拓扑分子极性表面积:140重原子数量:19表面电荷:0复杂度:335同位素原子数量:0确定原子立构中心数量:4不确定原子立构中心数量:0确定化学键立构中心数量:0不确定化学键立构中心数量:0
细胞化学基础疏水键的定义和特性
疏水键又称疏水作用力。不是真正的化学键疏水键(hydrophobic bond)是两个不溶于水的分子间的相互作用。当分子中烃基链与水接触时,因不能被水溶剂化,界面水分子整齐地排列,导致系统熵值降低,能量增加,产生表面张力。为了克服表面张力,疏水基团会收缩、卷曲和结合,将原来规则排布于表面的水分子排挤
化学键能数据库iBonD向全球免费开放-减少重复性化学实验
国际上首个网络版化学键能数据库iBonD正式上线。该数据库是迄今为止国际上关于键能领域综合度最高、收录数目最多的大型数据库,并免费向全球科研人员开放,同时支持PC端和移动端访问。 3月15日上午,清华大学基础分子科学中心和南开大学元素有机化学国家重点实验室程津培院士研究组召开新闻发布会,宣布了
关于氢键的成键原子的相关介绍
氢键通常可用X-H…Y来表示。其中X以共价键(或离子键)与氢相连,具有较高的电负性,可以稳定负电荷,因此氢易解离,具有酸性(质子给予体)。而Y则具有较高的电子密度,一般是含有孤对电子的原子,容易吸引氢质子,从而与X和H原子形成三中心四电子键。 成键原子 典型的氢键中,X和Y是电负性很强的F、
细胞化学基础黄嘌呤计算化学数据
1、 疏水参数计算参考值(XlogP):-0.72、 氢键供体数量:33、 氢键受体数量:34、 可旋转化学键数量:05、 互变异构体数量:156、 拓扑分子极性表面积(TPSA):86.97、 重原子数量:118、 表面电荷:09、 复杂度:21710、 同位素原子数量:011、 确定原子立构中心
细胞化学基础鸟嘌呤计算化学数据
1、疏水参数计算参考值(XlogP):无2、氢键供体数量:33、氢键受体数量:24、可旋转化学键数量:05、互变异构体数量:266、拓扑分子极性表面积:96.27、重原子数量:118、表面电荷:09、复杂度:22510、同位素原子数量:011、确定原子立构中心数量:012、不确定原子立构中心数量:0
哪些中性基团有氢键键合能力
一般来说,中性基团的氢键键合能力与原子的电负性和电子密度相关。以下是一些常见的中性基团,它们具有氢键键合能力:1. 酰胺基 (-CONH-):酰胺基中的羰基原子处于电子亏损状态,因此具有较高的电子亲和力,可形成氢键。2. 羧基 (-COOH):羧基中的羰基原子和氧原子都处于电子亏损状态,因此也具有较
哪些中性基团有氢键键合能力
一般来说,中性基团的氢键键合能力与原子的电负性和电子密度相关。以下是一些常见的中性基团,它们具有氢键键合能力:1. 酰胺基 (-CONH-):酰胺基中的羰基原子处于电子亏损状态,因此具有较高的电子亲和力,可形成氢键。2. 羧基 (-COOH):羧基中的羰基原子和氧原子都处于电子亏损状态,因此也具有较
哪些中性基团有氢键键合能力
一般来说,中性基团的氢键键合能力与原子的电负性和电子密度相关。以下是一些常见的中性基团,它们具有氢键键合能力:1. 酰胺基 (-CONH-):酰胺基中的羰基原子处于电子亏损状态,因此具有较高的电子亲和力,可形成氢键。2. 羧基 (-COOH):羧基中的羰基原子和氧原子都处于电子亏损状态,因此也具有较
细胞化学基础二硫键的结构性质
二硫键结合能力较强,典型的二硫键键离解能为60 kcal/mol (251 kJ/mol)。由于二硫键比C-C键和C-H键弱40%左右,在许多分子中二硫键往往是”弱键”。此外,S-S键反映了二价硫的极化特性,容易被极性试剂(包括亲电试剂和亲核试剂,特别是亲核试剂)切断 。二硫键的长度约为2.05 A
细胞化学基础二硫键基本信息
在化学中,二硫键指结构为R-S-S-R '的官能团。二硫键通常由两个硫醇基团耦合而成。在生物学中,两个半胱氨酸残基中硫醇基团间形成的二硫键是蛋白质二级结构和三级结构的重要组成部分。此键在蛋白质分子的立体结构形成上起着一定的重要作用。
细胞化学基础腺苷一磷酸计算化学数据
疏水参数计算参考值(XlogP):-2.7氢键供体数量5氢键受体数量:11可旋转化学键数量:4互变异构体数量:3拓扑分子极性表面积(TPSA):186重原子数量:23表面电荷:0复杂度:481同位素原子数量:0确定原子立构中心数量:4不确定原子立构中心数量:0确定化学键立构中心数量:0不确定化学键立
细胞化学基础黄嘌呤物性数据
1. 性状:白色鳞片状或片状结晶。2. 密度(g/mL,25/4℃):不确定3. 相对蒸汽密度(g/mL,空气=1):不确定4. 熔点(oC):3005. 沸点(oC,常压):不确定6. 沸点(oC, 5.2kPa):不确定7. 折射率:不确定8. 闪点(oC):不确定9. 比旋光度(o):不确定1
氢键的结合能的计算
氢键的结合能是2—8千卡(Kcal)。氢键是一种比分子间作用力(范德华力)稍强,比共价键和离子键弱很多的相互作用。其稳定性弱于共价键和离子键。常见氢键的平均键能与键长数据为:
羟基能形成氢键,那么羧基能不能形成氢键
可以的。很多羧酸都以二聚体的形式存在,就是羧基之间形成了氢键。