膜片钳技术的技术原理简介

膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳技术的建立,对生物学科学特别是神经科学是一具有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个)的离子通道分子活动的技术。此技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。......阅读全文

膜片钳技术的技术原理简介

  膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代

膜片钳技术简介

  膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Automated patch clamp technique)。  传统膜片钳技术每次只能记录

膜片钳技术原理

可兴奋膜的电学模型      细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线

膜片钳记录技术

中文名称膜片钳记录技术英文名称patch-clamp recording定  义研究离子通过膜离子通道运动的一种技术。即用一微电极封住(钳住)细胞膜片表面,然后测量通过这一部分膜上的电流。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)

免疫酶技术的技术原理简介

  免疫酶技术是将抗原抗体反应的特异性与酶的高效催化作用有机结合的一种方法。它以酶作为标记物,与抗体或抗原联结,与相应的抗原或抗体作用后,通过底物的颜色反应作抗原抗体的定性和定量,亦可用于组织中抗原或抗体的定位研究,即酶免疫组织化学技术。  目前应用最多的免疫酶技术是酶联免疫吸附实验(ELISA),

膜片钳技术的基本介绍

  1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究

膜片钳技术的操作步骤

  (1)膜片微电极的制作  拉制  膜片微电极是将玻璃毛细管用拉管仪拉制而成。  涂硅酮树酯  将硅酮树酯涂于微电极的最尖端以外的部分,然后将其通过加热镍铬电阻线圈而烘干变固。  热刨光  在显微镜下,将微电极尖端接近热源进行热刨光处理可提高巨阻抗封接的成功率。  充灌微电极液  用于灌充微电极的

膜片钳技术(patch-clamp)

Instruments For ElectrophysiologyProducts include microelectrode, voltage and current clamp amplifiers, perfusion chambers, perfusion heating systems,

PCR技术的原理简介

  DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,

干燥技术的原理简介

  在一定温度下,任何含水的湿物料都有一定的蒸气压,当此蒸气压大于周围气体中的水汽分压时,水分将汽化。汽化所需热量,或来自周围热气体,或由其他热源通过辐射、热传导提供。含水物料的蒸气压与水分在物料中存在的方式有关。物料所含的水分,通常分为非结合水和结合水。非结合水是附着在固体表面和孔隙中的水分,它的

关于膜片钳技术的发展历史

  该技术是由电压钳(voltageclamp)发展而来的,电压钳技术由Cole和Marment设计,后经Hodgkin和Huxley改进并成功地应用于神经纤维动作电位的研究 [2] 。其设计原理是根据离子作跨膜移动时形成了跨膜离子电流(I),而通透性即离子通过膜的难易程度,其膜电阻(R)的倒数,也

膜片钳记录技术的方法介绍

中文名称膜片钳记录技术英文名称patch-clamp recording定  义研究离子通过膜离子通道运动的一种技术。即用一微电极封住(钳住)细胞膜片表面,然后测量通过这一部分膜上的电流。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)

膜片钳技术的应用进展(二)

2.3  实验的一般操作步骤     ①拉制微电极和充灌微电极;②将预先处理的实验标本置于显微镜载物台上的灌流槽内;③于显微镜低倍镜下,用微操纵器将电极移动到浴液上方,换用高倍镜按一 定标准选择合适的细胞,然后接近靶细胞或组织,完成电极与标本的封接;④给予钳位电压或电流等指令条件并分别记

膜片钳技术的应用进展(三)

4  膜片钳技术的主要用途     膜片钳技术广泛用于研究细胞离子通道,已经成为研究细胞水平生理功能的常用技术。归纳其主要用途包括[4] :1)可分辨单通道电流,直接观察通道开启和关 闭的全过程。通过测得的单通道特征参数可鉴别通道类型,同时可验证和研究通道的开关动力学模型。2)单通道记录可以解释

关于膜片钳技术的应用介绍

  (1)与药物作用有关的心肌离子通道  心肌细胞通过各种离子通道对膜电位和动作电位稳态的维持而保持正常的功能。近年来,国外学者在人类心肌细胞离子通道特性的研究中取得了许多进展,使得心肌药理学实验由动物细胞模型向人心肌细胞成为可能。  (2)对离子通道生理与病理情况下作用机制的研究  通过对各种生理

膜片钳技术的应用进展(一)

【摘要】  膜片钳技术是研究离子通道的“金标准”,应用该技术可以证实细胞膜上离子通道的存在,并能对其电生理特性、分子结构、药物作用机制等进行深入的研究。 【关键词】  膜片钳技术 离子通道 进展    1976年由德国马普生物物理化学研究所的Neher和Sakamann首次报道了应用膜片钳技术在蛙胸

植物组织培养技术的技术原理简介

  植物组织培养即植物无菌培养技术,又称离体培养,是根据植物细胞具有全能性的理论,利用植物体离体的器官(如根、茎、叶、茎尖、花、果实等)、组织(如形成层、表皮、皮层、髓部细胞、胚乳等)或细胞(如大孢子、小孢子、体细胞等)以及原生质体,在无菌和适宜的人工培养基及温度等人工条件下,能诱导出愈伤组织、不定

荧光偏振技术的原理简介

  将磷酸化底物进行荧光标记,蛋白激酶产生的磷酸化产物不进行荧光标记。让两种磷酸化产物与抗丝氨酸抗体(丝氨酸和苏氨酸是最常见的磷酸化位点,因为其结构末端含有羟基,羟基很活泼,可以与磷酸基团结合)相竞争结合。当反应液中没有蛋白激酶产生的磷酸化产物时,荧光标记的磷酸化物与抗体相结合形成复合体,由于复合体

微胶囊技术的原理简介

  具体来说是指将某一目的物(芯或内相)用各种天然的或合成的高分子化合物连续薄膜(壁或外相)完全包覆起来,而对目的物的原有化学性质丝毫无损,然后逐渐地通过某些外部刺激或缓释作用使目的物的功能再次在外部呈现出来,或者依靠囊壁的屏蔽作用起到保护芯材的作用,微胶囊的直径一般为 1~500μm,壁的厚度为

电生理专题——膜片钳技术基本原理与特点

  膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。目前

膜片钳的简介

膜片钳又称单通道电流记录技术,用特制的玻璃微吸管吸附于细胞表面,使之形成10~100的密封(giga-seal),又称巨阻封接,被孤立的小膜片面积为μm量级,内中仅有少数离子通道。然后对该膜片实行电压钳位,可测量单个离子通道开放产生的pA(10的负12次方安培)量级的电流,这种通道开放是一种随机过程

电生理专题——膜片钳技术的应用

  膜片钳技术发展至今,已经成为现代细胞电生理的常规方法,它不仅可以作为基础生物医学研究的工具,而且直接或间接为临床医学研究服务。  目前膜片钳技术广泛应用于神经(脑)科学、心血管科学、药理学、细胞生物学、病理生理学、中医药学、植物细胞生理学、运动生理等多学科领域研究。  随着全自动膜片钳技术(Au

膜片钳技术的应用学科相关介绍

  膜片钳技术发展至今,已经成为现代细胞电生理的常规方法,它不仅可以作为基础生物医学研究的工具,而且直接或间接为临床医学研究服务,  目前膜片钳技术广泛应用于神经(脑)科学、心血管科学、药理学、细胞生物学、病理生理学、中医药学、植物细胞生理学、运动生理等多学科领域研究。  随着全自动膜片钳技术(Au

膜片钳记录和分析技术(一)

细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科—电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小

非损伤微测技术与膜片钳技术的主要区别

   1976年膜片钳技术的诞生是现代生命科学研究史上的重要事件,两位德国科学家因应用膜片钳技术进行离子通道研究所取得的成就而荣获1991年诺贝尔生理学或医学奖。膜片钳技术对离子通道开闭情况的研究,成为连接生物分子和生物功能研究的重要桥梁,催生了大量高水平研究成果。     但随着膜片钳技术的广泛应

超临界萃取的技术原理简介

  超临界CO2流体萃取(SFE)分离过程的原理是利用 超临界流体的 溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在 超临界状态下,将 超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不

简介膜分离技术的工艺原理

  膜分离的基本工艺原理是较为简单的。在过滤过程中料液通过泵的加压,料液以一定流速沿着滤膜的表面流过,大于膜截留分子量的物质分子不透过膜流回料罐,小于膜截留分子量的物质或分子透过膜,形成透析液。故膜系统都有两个出口,一是回流液(浓缩液)出口,另一是透析液出口。在单位时间(Hr)单位膜面积(m2)透析

简介高速逆流色谱技术的原理

  高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离

超声介入技术治疗原理简介

  在B 超的引导下细针穿刺,直接到达病灶区域,抽吸囊液或者注入药物,使囊肿萎缩消失,腺肌瘤或肌瘤经过注药瞬间变性坏死,萎缩,最终纤维化,临床症状随之缓解。具有不开刀,不打孔,细针穿刺安全无创伤,无痛苦,不复发,不住院等诸多优点,符合了后现代医学的治疗理念。

膜片钳系统的简介

  膜片钳放大器可以配  5101-01G(1  GΩ)探头等三种探头,适用于电流为±10  nA范围内的单通道测定和整体细胞研究,特点有:具有独立的电压和电流电路,4级低通Bessel滤波器。具有Zap功能和内部检测信号,三种电流钳响应速度增加了大型膜片钳的稳定性。  这个系统包含的PowerLa