X射线的基本内容介绍

X射线,是一种频率极高,波长极短、能量很大的电磁波。 X射线的频率和能量仅次于伽马射线,频率范围30PHz~300EHz,对应波长为1pm~10nm,能量为124eV~1.24MeV。X射线具有穿透性,但人体组织间有密度和厚度的差异,当X射线透过人体不同组织时,被吸收的程度不同,经过显像处理后即可得到不同的影像。......阅读全文

X射线的基本内容介绍

  X射线,是一种频率极高,波长极短、能量很大的电磁波。  X射线的频率和能量仅次于伽马射线,频率范围30PHz~300EHz,对应波长为1pm~10nm,能量为124eV~1.24MeV。X射线具有穿透性,但人体组织间有密度和厚度的差异,当X射线透过人体不同组织时,被吸收的程度不同,经过显像处理后

X射线的介绍

  X射线(X-ray,伦琴射线)是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是一种电磁波,由德国物理学家W.K.伦琴于1895年发现[1]。  X射线具有很高的穿透性,被用于医学成像诊断。2017年10月27日,世界卫生组织国际癌症研究机构将X射线放置在致癌物清单中。

X射线与γ射线的相关介绍

  X射线是带电粒子与物质交互作用产生的高能光量子。  X射线与γ射线有许多类似的特性,但它们起源不同。  X射线由原子外部引起,而γ射线由原子内部引起。X射线比γ射线能量低,因此穿透力小于γ射线。成千上万台X射线机在日常中被运用于医学和工业上。X射线也被用于癌症治疗中破坏癌变细胞,由于它的广泛运用

X射线的原理介绍

  产生X射线的最简单方法是用加速后的电子撞击金属靶。撞击过程中,电子突然减速,其损失的动能会以光子形式放出,形成X光光谱的连续部分,称之为轫致辐射。通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1nm左右的光

X射线的特点介绍

  X射线与可见光相比,除了具有波粒二象性的共同性质之外,还因其波长短、能量大而显示其特性:   1、穿透能力强;   2、折射率几乎等于1;   3、透过晶体时发生衍射。

X射线荧光光谱仪X射线吸收的介绍

  当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。  当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律:  式中,μ为质量衰减系数;ρ为样

X射线荧光光谱仪X射线的衍射介绍

  相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。  其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。  另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

x射线测厚仪的X射线发射源及接收检测头介绍

  采用X射线管和高压电源。X射线管装在一个抽真空后注满油的全密封的油箱中保证绝缘和良好冷却,高压等级根据所造型号不同有所区别,加上传感器具有的温度自动保护与报警功能,提高了X射线管的稳定性和使用寿命。模块化设计、免维护设计方案及规范的制造保证了设备系统高可靠性。  检测头采用电离室和电子前置放大器

X射线荧光分析的介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。  1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir

X射线衍射的应用介绍

X 射线衍射技术已经成为最基本、最重要的一种结构测试手段,其主要应用主要有以下几个方面:物相分析物相分析是X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。

X射线的生物特性介绍

  X射线照射到生物机体时,可使生物细胞受到抑制、破坏甚至坏死,致使机体发生不同程度的生理、病理和生化等方面的改变。不同的生物细胞,对X射线有不同的敏感度,可用于治疗人体的某些疾病,特别是肿瘤的治疗。在利用X射线的同时,人们发现了导致病人脱发、皮肤烧伤、工作人员视力障碍,白血病等射线伤害的问题,在应

关于X射线诊断的介绍

  X射线应用于医学诊断,主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大差别,

X射线的物理特性介绍

  1、穿透作用。X射线因其波长短,能量大,照在物质上时,仅一部分被物质所吸收,大部分经由原子间隙而透过,表现出很强的穿透能力。X射线穿透物质的能力与X射线光子的能量有关,X射线的波长越短,光子的能量越大,穿透力越强。X射线的穿透力也与物质密度有关,利用差别吸收这种性质可以把密度不同的物质区分开来。

关于X射线的原理介绍

  产生X射线的最简单方法是用加速后的电子撞击金属靶。撞击过程中,电子突然减速,其损失的动能会以光子形式放出,形成X光光谱的连续部分,称之为轫致辐射。通过加大加速电压,电子携带的能量增大,则有可能将金属原子的内层电子撞出。于是内层形成空穴,外层电子跃迁回内层填补空穴,同时放出波长在0.1nm左右的光

X射线应力仪的介绍的介绍

  X射线为表面残余应力测定技术中数量较少的无损检测法之一,其是利用材料或制品晶面间距的变化来对应力进行测定的,作为残余应力分析和检测方法,对其研究的非常广泛,深入以及成熟。X射线残余应力分析仪利用圆形全二维探测器对X射线在给定角度入射后的全部衍射德拜环进行获取,不需要测角仪,使传统X射线残余应力分

X射线管中X射线的产生原理

实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.

关于x光机的X射线发现的介绍

  X射线发现  1895年德国物理学家伦琴(W.C.RÖntgen)在研究阴极射线管中气体放电现象时,用一只嵌有两个金属电极(一个叫做阳极,一个叫做阴极)的密封玻璃管,在电极两端加上几万伏的高压电,用抽气机从玻璃管内抽出空气。为了遮住高压放电时的光线(一种弧光)外泄,在玻璃管外面套上一层黑色纸板。

软X射线源上X射线能谱与X射线能量的测量

本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。

关于X射线的本质的介绍

  X射线的本质是电磁辐射,具有波粒二像性。  1)波动性  X射线的波长范围:0.01~100  用于元素分析的X射线光谱所使用的波长范围在0.01~11nm  2)粒子性  特征表现为以光子形式辐射和吸收时具有的一定的质量、能量和动量。  表现形式为在与物质相互作用时交换能量。如光电效应、荧光辐

X射线衍射仪的的X射线探测器和控制装置介绍

  (1)X射线探测器 —— 测量X射线强度的计数装置;  计数器的主要功能是将X射线光子的能量转换成电脉冲信号。通常用于X射线衍射仪的辐射探测器有正比计数器、闪烁计数器和位敏正比探测器。  (2)X射线系统控制装置 —— 数据采集系统和各种电气系统、保护系统。  X射线能对人体组织造成伤害,在自己

X射线荧光(XRF):理解特征X射线

  什么是XRF?   X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。  XRF如何工作?   当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能

X射线衍射分析的基本介绍

  X射线衍射分析(X-raydiffraction,简称XRD),是利用晶体形成的X射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对

X射线荧光的物理原理介绍

  X射线是电磁波谱中的某特定波长范围内的电磁波,其特性通常用能量(单位:千电子伏特,keV)和波长(单位:nm)描述。  X射线荧光是原子内产生变化所致的现象。一个稳定的原子结构由原子核及核外电子组成。其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子(如K层)在足够能量的X射线照射下脱

关于X射线的化学特性介绍

  1、感光作用。X射线同可见光一样能使胶片感光。胶片感光的强弱与X射线量成正比,当X射线通过人体时,因人体各组织的密度不同,对X射线量的吸收不同,胶片上所获得的感光度不同,从而获得X射线的影像。  2、着色作用。X射线长期照射某些物质如铂氰化钡、铅玻璃、水晶等,可使其结晶体脱水而改变颜色。

X射线荧光分析的基本介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法,又称X射线次级发射光谱分析,是利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究。  1948年由H.费里德曼(H.Friedmann)和L.S.伯克斯(L.S.Bir

X射线荧光仪的相关介绍

  X射线荧光仪一般是采用,激发样品中的目标元素,使之产生特征X射线,通过测量特征X射线的照射量率来确定目标元素及其含量的仪器。  仪器分为室内分析、野外便携式和X射线荧光测井仪三种类型。各种类型的仪器均由探测器和操作台两部分组成。由于目前使用的探测器(正比计数管及闪烁计数器)能量分辨率不高,不能区

X射线投射检测技术的介绍

  X射线检测技术是无损检测技术的一种。  X射线透射检查法可提供铸件检测部位有无缺陷及缺陷尺寸的照片。X射线透照法主要应用在铸件和机器部件中出现的诸如裂纹、孔洞和夹杂等缺陷的辨识和评价。  X射线不能直接测量,在测量前必须把它转化为可测量的量,有照相法和电信号法两种X射线检测技术。照相法是把X射线

X射线衍射仪的基本介绍

  特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。  X射线衍射仪的英文名称是

特征X射线像的功能介绍

中文名称特征X射线像英文名称characteristic X-ray image定  义在扫描电子显微镜中,由电子探针激发样品而产生的特征X射线对样品所成的像。应用学科机械工程(一级学科),光学仪器(二级学科),电子光学仪器-电子光学仪器一般名词(三级学科)