全二维气相色谱和普通色谱的区别

全二维气相色谱是多维色谱的一种,但它不同于通常的二维色谱。二维色谱一般采用中心切割法,从第一支色谱柱预分离后的部分馏分,被再次进样到第二支色谱柱,作进一步的分离,样品中的其它组分或被放空或也被中心切割。尽管可通过增加中心切割的次数来实现对感兴趣组分的分离,但由于流出柱1进到柱2时组分的谱带已较宽,因此,第二维的分辨率会受到损失。这种方法第二维的分析速度一般较慢,不能完全利用二维气相色谱的峰容量,它只是把第一支色谱柱流出的部分馏分转移到第二支色谱柱上,进行进一步的分离。全二维气相色谱是把分离机理不同而又互相独立的两支色谱柱以串联方式结合成二维气相色谱,在这两支色谱柱之间装有一个调制器,起捕集再传送的作用,经第一支色谱柱分离后的每一个馏分,都需先进入调制器,进行聚焦后再以脉冲方式送到第二支色谱柱进行进一步的分离,所有组分从第二支色谱柱进入检测器,信号经数据处理系统处理,得到以柱1保留时间为第一横坐标,柱2保留时间为第二横坐标,信号强......阅读全文

全二维气相色谱和普通色谱的区别

全二维气相色谱是多维色谱的一种,但它不同于通常的二维色谱。二维色谱一般采用中心切割法,从第一支色谱柱预分离后的部分馏分,被再次进样到第二支色谱柱,作进一步的分离,样品中的其它组分或被放空或也被中心切割。尽管可通过增加中心切割的次数来实现对感兴趣组分的分离,但由于流出柱1进到柱2时组分的谱带已较宽,因

全二维气相色谱和普通色谱的区别

气相色谱作为复杂混合物的分离工具,已对挥发性化合物的分离分析发挥了很大的作用。目前使用的大多数仪器为一维色谱, 使用一根柱子,适合于含几十~几百个物质的样品分析. 当样品更复杂时,就要用到多维色谱技术。 全二维气相色谱(Comprehensive Two-dimensional Gas Chroma

全二维气相色谱和普通色谱的区别

气相色谱作为复杂混合物的分离工具,已对挥发性化合物的分离分析发挥了很大的作用。目前使用的大多数仪器为一维色谱, 使用一根柱子,适合于含几十~几百个物质的样品分析. 当样品更复杂时,就要用到多维色谱技术。全二维气相色谱(Comprehensive Two-dimensional Gas Chromat

什么是全二维气相色谱

全二维气相色谱是多维色谱的一种,但它不同于通常的二维色谱。二维色谱一般采用中心切割法,从第一支色谱柱预分离后的部分馏分,被再次进样到第二支色谱柱,作进一步的分离,样品中的其它组分或被放空或也被中心切割。尽管可通过增加中心切割的次数来实现对感兴趣组分的分离,但由于流出柱1进到柱2时组分的谱带已较宽,因

全二维气相色谱-色谱届的《阿凡达》

  GC×GC操控软件及GC Image数据分析软件:   应用全二维色谱技术,硬件是保障,软件的功能也及其重要,因为传统的获得几十个峰的色谱,到了全二维中,常常会获得几千个化合物的色谱,软件可以帮助去快速、自动化地解析每一个化合物。比如,GC Image数据分析软件能够进行精确质量数计算和元

全二维气相色谱时代即将到来

  GC×GC即将迎来蓬勃发展的时期   对于全二维的GC×GC×HiResTOFMS系统,ZOEX公司的总裁Ledford先生是这样形容的:“就像手机一样,用了你就离不开它,也无法想象没有手机的时代,所以,GC×GC蓬勃发展的时期即将到来!”。   Ledford先生介绍,GC×

一文了解全二维气相色谱!

  气相色谱作为一种重要的分析挥发性和半挥发性有机化合物的工具,在对组分数多达几千的复杂体系进行分析时,传统的一维色谱(1DGC)不仅费时,而且由于峰容量不够,峰重叠十分严重等问题无法满足分离要求。于是就产生了全二维气相色谱,其目的就是为了解决重叠峰、共馏峰和分离不完全等一维气相色谱所存在的问题。 

全二维气相色谱分析的特点

从Philips 1991年开始GC×GC研究至目前为止,包括作者实验室在内的很多实验室参与全二维气相色谱技术的研究开发,并于1999年正式实现了仪器的商品化。该仪器具有如下特点:1 分辨率高、峰容量大。其峰容量为组成它的两根柱子各自峰容量的乘积,分离度为二柱各自分离度平方加和的平方根。2 灵

全二维气相色谱第二维死时间的测定

摘要:建立了两种恒压模式下全二维气相色谱第二维死时间的测定方法。一种方法是利用不同压力下的相对保留时间差规律,计算非同步调制的全二维气相色谱第二维的保留时间,再利用正构烷烃同系物的保留规律线性拟合计算第二维的死时间;测定的第二维的死时间与温度的线性相关系数大于0.997。另一种方法是

全二维气相色谱第二维死时间的测定

摘要:建立了两种恒压模式下全二维气相色谱第二维死时间的测定方法。一种方法是利用不同压力下的相对保留时间差规律,计算非同步调制的全二维气相色谱第二维的保留时间,再利用正构烷烃同系物的保留规律线性拟合计算第二维的死时间;测定的第二维的死时间与温度的线性相关系数大于0.997。另一种方法是在已知化合物保留

气相色谱和液相色谱仪的区别

    色谱仪是一种用来进行色谱分离分析的装置,凭借其独特的分离能力以及准确度较高的分析能力,在食品安全、工业生产、医疗制药等领域都有较为广泛运用,在我们生产生活的各种领域发挥着重要的作用。   色谱仪的种类有很多,其中气相色谱和液相色谱是较为常见的两种色谱技术,今天我们就气相色谱和液相色谱的异同做

气相色谱和液相色谱之间的主要区别

气相色谱和液相色谱之间的主要区别  气相良好的分离能力 高灵敏度 快速分析速度 易于操作等。由于技术条件的限制,难以通过气相色谱分析沸点太高的物质或热稳定性差的物质。通常,衍生化方法或裂解方法可用于挥发性较低或易于在500℃或更低温度下通过加热分解的部分。  液相高效液相色谱只需要将样品制成不需要气

雪景科技:让全二维气相色谱变得人人可用

  【导语】当我们走进电影院,更多的3D影像技术给我们带来更丰富逼真的体验。对气相色谱工作者来说,当我们使用全二维气相色谱时,在壮观的3D分离图像之中,我们体会到“分离更清晰”的无比快感。不过阻碍数十万气相色谱工作者体验这种快感的最后屏障是什么?如何才能让全二维气相色谱变得人人可用?不久前,分析测试

气相色谱的前处理和液相色谱前处理的区别

气相色谱的前处理和液相色谱前处理的区别简单的说,气质联用仪是将气相色谱作为样品分离工具,质谱作为检测器。而单一的气谱是需要检测器如FID,TIC等等。气质联用其实就是在气相色谱仪后面加上了质谱议,然后把气相的检测器去掉,将质谱作为检测器。这样不但能将各个物质分离开来,还能通过质谱鉴别物质的种类。另外

气相色谱法和液相色谱法的区别

你问对人了相同:兼具分离和分析功能,均可以在线检测主要差别:(1)操作条件差别(2)进样方式差别(3)检测器差别(4)流动相差别(5)分析对象差别详细:(1)操作条件差别 GC:加温操作 HPLC:通常室温操作,高压泵操作(2)进样方式差别 GC:样品需加热气化或裂解 HPLC:样品制成溶液即可(3

气相与液相色谱区别

气相与液相色谱有什么区别流动相:gc为气体hplc为液体柱子:气相柱效高液相柱效较低检测器不一样气相是柱子多流动相少;液相是流动相种类多柱子少气相主要分析低沸点化合物液相分析高沸点化合物一般来说气相检测破坏样品液相检测很少破坏样品样品在气相中不纯在二次分配样品在液相中分别在流动相固定相中存在二次分配

气相与液相色谱区别

气相与液相色谱有什么区别流动相:gc为气体hplc为液体柱子:气相柱效高液相柱效较低检测器不一样气相是柱子多流动相少;液相是流动相种类多柱子少气相主要分析低沸点化合物液相分析高沸点化合物一般来说气相检测破坏样品液相检测很少破坏样品样品在气相中不纯在二次分配样品在液相中分别在流动相固定相中存在二次分配

为什么全二维气相色谱具有峰容量大的特点

因为全二位气相色谱是由2根柱子组成,那么其峰容量就是2个柱子的峰容量的乘积,那么很容易得知全二维的气相色谱峰容量大就是显而易见了。

气质联用色谱与气相色谱区别

  色谱的主要作用是将物质分离。而质谱更多的被用来鉴别纯物质。  气相色谱一般是利用样品中不同组分的沸点、极性和吸附性质的不同,从而样品中的不同组分在固定相和流动相之间达到平衡的时间不同,因此达到将混合物分离的效果。这样就可以将复杂的混合物分成若干相对来说的纯物质来进行检测,从而分析出混合样品中的成

正相色谱和反相色谱的区别

1、固定相不同:正相硅胶具有极性基的表面,而反相硅胶是经过改性,表面键合烷基链(例如 C-18),极性更小,因此对极性化合物有较小的保留。2、适用的样品类型不同:由于反相条件下,修饰了硅胶表面的羟基,使其极性降低,使得其适用性变得更加宽广(相对比反相而言),各类极性的大小分子,天然产物,都可以在反相

正相色谱和反相色谱的区别

1、固定相不同:正相硅胶具有极性基的表面,而反相硅胶是经过改性,表面键合烷基链(例如 C-18),极性更小,因此对极性化合物有较小的保留。2、适用的样品类型不同:由于反相条件下,修饰了硅胶表面的羟基,使其极性降低,使得其适用性变得更加宽广(相对比反相而言),各类极性的大小分子,天然产物,都可以在反相

正相色谱和反相色谱的区别

1、固定相不同:正相硅胶具有极性基的表面,而反相硅胶是经过改性,表面键合烷基链(例如 C-18),极性更小,因此对极性化合物有较小的保留。2、适用的样品类型不同:由于反相条件下,修饰了硅胶表面的羟基,使其极性降低,使得其适用性变得更加宽广(相对比反相而言),各类极性的大小分子,天然产物,都可以在反相

正相色谱和反相色谱的区别

在正相色谱中,一般采用极性键合固定相,硅胶表面键合的是极性的有机基团,键合相的名称由键合上去的基团而定。最常用的有氰基(-CN)、氨基(-NH2)、二醇基(DIOL)键合相。流动相一般用比键合相极性小的非极性或弱极性有机溶剂,如烃类溶剂,或其中加入一定量的极性溶剂(如醇、乙腈等),以调节流动相的洗脱

正相色谱和反相色谱的区别

1、固定相不同:正相硅胶具有极性基的表面,而反相硅胶是经过改性,表面键合烷基链(例如 C-18),极性更小,因此对极性化合物有较小的保留。2、适用的样品类型不同:由于反相条件下,修饰了硅胶表面的羟基,使其极性降低,使得其适用性变得更加宽广(相对比反相而言),各类极性的大小分子,天然产物,都可以在反相

液相色谱仪与气相色谱的区别

  液相色谱仪通过组织器模块对各单元部件进行供电、自动分配IP地址,实现整机联网操作,操作方便、运行稳定、结果准确。  自动进样器、溶剂管理器、紫外-可见可变波长检测器、二极管阵列检测器、激光诱导荧光检测器、示差折光检测器,以及蒸发光散射检测器等配置,满足复杂样品体系的液相色谱分析,广泛用于食品、医

液相色谱仪与气相色谱的区别

 液相色谱仪通过组织器模块对各单元部件进行供电、自动分配IP地址,实现整机联网操作,操作方便、运行稳定、结果准确。  自动进样器、溶剂管理器、紫外-可见可变波长检测器、二极管阵列检测器、激光诱导荧光检测器、示差折光检测器,以及蒸发光散射检测器等配置,满足复杂样品体系的液相色谱分析,广泛用于食品、医药

气相色谱法和气相色谱一质谱法的区别

气相色谱法指使用气相色谱仪来分离和检验的统称。气相色谱仪就是一个分离装置,严格说,气相色谱仪是没法单独用的,必须加检测器气相色谱仪使用的检测器有NPD 、FID、FPD、ECD等等如果气相色谱器用质谱仪当做检测器,那么就是气相色谱一质谱法了。

全二维气相色谱柱组分类标准化协议的开发

一维气相色谱 (1D-GC) 固定相通常根据其相对极性分为非极性、半极性和极性柱。在全二维气相色谱 (GC×GC) 中,两个串联组装固定相之间的极性差异决定了色谱柱组合的选择性。这种极性差异称为正交性,GC×GC 色谱柱组可根据主色谱柱和次色谱柱之间串联耦合的方向大致分为四类。目前使用的 GC×GC

气相色谱和色谱理论的起源

1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,以气体为

气相色谱和色谱理论的出现

  1952年马丁和詹姆斯提出用气体作为流动相进行色谱分离的想法,他们用硅藻土吸附的硅酮油作为固定相,用氮气作为流动相分离了若干种小分子量挥发性有机酸。  气相色谱的出现使色谱技术从最初的定性分离手段进一步演化为具有分离功能的定量测定手段,并且极大的刺激了色谱技术和理论的发展。相比于早期的液相色谱,