激肽释放酶的发现与研究

1909年Abelous等首次报道静脉注射人尿液可引起狗的血压短暂下降,发现尿中存在降压物质。1930年Kraut等[2]在胰腺发现高浓度此物质,命名为“Kallikrein”,即激肽释放酶(KLK)。近30年来,随着分子生物学和细胞生物学技术的发展和应用,发现激肽释放酶-激肽系统(kallikrein kinin system,KKS)作为一个复杂的内源性多酶系统,参与调控心血管、肾脏、神经系统等的生理功能,与心脏病、肾病、炎症反应、癌症等疾病的发生有着密切关系。在心血管系统方面的研究进展很快,许多临床研究和基础实验已证实糖尿病、高血压、心力衰竭、心肌梗死及左心室肥厚等疾病的发生与KKS的活性降低有关。因而深入研究KKS的作用为研究心血管相关疾病的发病机制和治疗手段提供了又一新的途径。......阅读全文

激肽释放酶的发现与研究

1909年Abelous等首次报道静脉注射人尿液可引起狗的血压短暂下降,发现尿中存在降压物质。1930年Kraut等[2]在胰腺发现高浓度此物质,命名为“Kallikrein”,即激肽释放酶(KLK)。近30年来,随着分子生物学和细胞生物学技术的发展和应用,发现激肽释放酶-激肽系统(kallikre

激肽释放酶的发现

  1909年Abelous等[1]首次报道静脉注射人尿液可引起狗的血压短暂下降,发现尿中存在降压物质。1930年Kraut等[2]在胰腺发现高浓度此物质,命名为“Kallikrein”,即激肽释放酶(KLK)。近30年来,随着分子生物学和细胞生物学技术的发展和应用,发现激肽释放酶-激肽系统(kal

激肽释放酶的发现及组成

  发现  1909年Abelous等[1]首次报道静脉注射人尿液可引起狗的血压短暂下降,发现尿中存在降压物质。1930年Kraut等[2]在胰腺发现高浓度此物质,命名为“Kallikrein”,即激肽释放酶(KLK)。近30年来,随着分子生物学和细胞生物学技术的发展和应用,发现激肽释放酶-激肽系统

激肽释放酶的研究进展

  高血压  高血压可由收缩血管物质过多或舒张血管物质缺乏引起。BK能诱导血管内皮产生舒张因子,如一氧化氮(NO)和PGI2等,从而引起扩张血管,降低外周血管阻力及调节肾脏组织对钠盐的排泄,参与机体血压的调节。BK具有强大的利尿钠效应,可使肾脏血流量增多,肾小管周围毛细血管压增高,抑制肾小管再吸收,

激肽释放酶的研究进展

  高血压  高血压可由收缩血管物质过多或舒张血管物质缺乏引起。BK能诱导血管内皮产生舒张因子,如一氧化氮(NO)和PGI2等,从而引起扩张血管,降低外周血管阻力及调节肾脏组织对钠盐的排泄,参与机体血压的调节。BK具有强大的利尿钠效应,可使肾脏血流量增多,肾小管周围毛细血管压增高,抑制肾小管再吸收,

吡哆醛的发现与研究

在19世纪时,糙皮病(pellagra)除发现因烟碱酸缺乏引起外,在1926年又发现另一种维生素在饲料中缺乏时,也会引起小老鼠诱发糙皮病,后来此物质在1934年被定名为维生素B6,直到1938~193吡哆醛9年才被分离出来,并定性及能合成出维生素B6。

核酶的发现与研究

核酶最早由Cech和 Altman(1989年诺贝尔化学奖获得者)发现。1967年,Woese、 Crick与 Orgel等基于RNA二级结构的复杂程度提出其可能有催化活性;1982年,Cech在研究四膜虫rRNA前体剪接时发现其内含子有自我剪接活性;1983年,Altman在研究细菌tRNA前体时

核酸的发现与研究

核酸最早于1869年由瑞士医生和生物学家弗雷德里希·米歇尔分离获得,称为Nuclein [3]  。在19世纪80年代早期,德国生物化学学家,1910年诺贝尔生理和医学奖获得者科塞尔进一步纯化获得核酸,发现了它的强酸性。他后来也确定了核碱基。1889年,德国病理学家Richard Altmann创造

膜电位的发现与研究

1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙的脊髓,当铜钩与铁板接触时肌肉就会发生收缩,他把这种现象归因于动物电。1902年德国生理学家伯恩斯坦(Julius Bernstein)接受了德国化学家奥斯特瓦尔德(W.Ostwald)的膜通透性理

膜电位的研究与发现

1791年意大利解剖学家加伐尼(L.Galvani)偶然发现,如果将蛙腿的肌肉置于铁板上再用铜钩钩住蛙的脊髓,当铜钩与铁板接触时肌肉就会发生收缩,他把这种现象归因于动物电。1902年德国生理学家伯恩斯坦(Julius Bernstein)接受了德国化学家奥斯特瓦尔德(W.Ostwald)的膜通透性理

基因的发现与研究过程

从孟德尔定律的发现,一百多年来人们对基因的认识在不断深化。基因的分离定律1866年,奥地利学者G.J.孟德尔在他的豌豆杂交实验论文中,用大写字母A、B等代表显性性状如圆粒、子叶黄色等,用小写字母a、b等代表隐性性状如皱粒、子叶绿色等。他并没有严格地区分所观察到的性状和控制这些性状的遗传因子。但是从他

类病毒的发现与研究

20 世纪 70 年代初期,美国植物病理学家 Diener及其同事在研究马铃薯纺锤块茎病(potato spindle tuber disease)病原时,观察到病原无病毒颗粒和抗原性、对酚等有机溶剂不敏感、耐热(70 ℃ ~75 ℃ )、对高速离心稳定(说明其低分子量)、对 RNA 酶敏感等特点。

乙烯的发现与研究历史

早在20世纪初就发现用煤气灯照明时有一种气体能促进绿色柠檬变黄而成熟,这种气体就是乙烯。但直至60年代初期用气相层析仪从未成熟的果实中检测出极微量的乙烯后,乙烯才被列为植物激素。

核酸的发现与研究历史

核酸最早于1869年由瑞士医生和生物学家弗雷德里希·米歇尔分离获得,称为Nuclein  。在19世纪80年代早期,德国生物化学学家,1910年诺贝尔生理和医学奖获得者科塞尔进一步纯化获得核酸,发现了它的强酸性。他后来也确定了核碱基。1889年,德国病理学家Richard Altmann创造了核酸这

基因的发现与研究历史

基因是控制生物性状的基本遗传单位。19世纪60年代,奥地利遗传学家格雷戈尔·孟德尔就提出了生物的性状是由遗传因子控制的观点,但这仅仅是一种逻辑推理。20世纪初期,遗传学家摩尔根通过果蝇的遗传实验,认识到基因存在于染色体上,并且在染色体上是呈线性排列,从而得出了染色体是基因载体的结论。1909年丹麦遗

菠萝酶的发现与研究

许多人认为医药企业的研究数据更可靠。美国、德国和瑞士的一些主要的医药公司研究发现菠萝蛋白脢能治疗多种疾病,而且非常有效和安全一一这些疾病与诺丽所帮助的疾病相同,但诺丽比它的作用更大。他们的发现表明,在一种植物中存在着一种非常重要的成份。也就是说,医药企业证实有一种食品补充物质能对许多疾病有帮助,尽管

RNA干扰的发现与研究

RNAi是在研究秀丽新小杆线虫(C. elegans)反义RNA(antisense RNA)的过程中发现的,由dsRNA介导的同源RNA降解过程。1995年,Guo等发现注射正义RNA(sense RNA)和反义RNA均能有效并特异性地抑制秀丽新小杆线虫par-1基因的表达,该结果不能使用反义RN

赤霉素的发现与研究

1926年日本黑泽在水稻恶苗病的研究中,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。1935年薮田和住木从赤霉菌的分泌物中分离出了有生理活性的物质,定名为赤霉素(GA)。从50年代开始,英、美的科学工作者对赤霉素进行了研究,现已从赤霉菌和高等植物中分离出60多

溶菌酶的发现与研究历史

一、溶菌酶历史溶菌酶是由英国细菌学家费明(Fenin)于1929年在鼻粘液中发现的强力杀菌物质,随后命名为溶菌酶。二、溶菌酶定义溶菌酶(Lysozyme)又称胞壁质酶或糖苷水解酶或N-乙酰胞壁质聚糖水解酶,是一种专门作用于微生物细胞壁的水解酶。由129个安基酶组成碱性球蛋白,为白色或微黄色的结晶性或

病毒的发现与研究历史

一、病毒病由来已久  地球上的人类,其他动物和植物遭受病毒病的折磨已有许多世纪。许多记述表明至少在公元前二至三个世纪印度和中国就存在天花,中国从公元十世纪宋真宗时代就有接种人痘预防天花的记载了。在明代隆庆年间(1567-1572),人痘预防天花推行甚广,先后传至俄国、日本、朝鲜、土耳其及英国。179

雷帕霉素的发现与研究

雷帕霉素(又名“西罗莫司”)是科学家于1975年首次从智利复活节岛的土壤中发现的一种由土壤链霉菌分泌的次生代谢物,其化学结构属于“三烯大环内酯类”化合物。1977年发现雷帕霉素具有免疫抑制作用,1989年开始把RAPA作为治疗器官移植的排斥反应的新药进行试用。由于雷帕霉素发酵收得率较低及提取工艺较复

生长素的发现与研究

C.Darwin在1880年研究植物向性运动时,只有各种激素的协调配合,发现植物幼嫩的尖端受单侧光照射后产生的一种影响,能传到茎的伸长区引起弯曲。1928年荷兰F.W.温特从燕麦胚芽鞘尖端分离出一种具生理活性的物质,称为生长素,它正是引起胚芽鞘伸长的物质。1934年荷兰F.克格尔等从人尿得到生长素的

脱落酸的发现与研究

1961年W.C.刘和H.R.卡恩斯从成熟棉铃里分离出一种能使外植体切除叶片后的叶柄脱落加速的物质结晶,称为“脱落素Ⅰ”,但未鉴定其化学结构。1963年大熊和彦和F.T.阿迪科特等从棉花幼铃中分离出另一种加速脱落的物质结晶,叫做脱落素Ⅱ。同年C.F.伊格斯和P.F.韦尔林用色谱分析法从欧亚槭叶子里分

氨基酸的发现与研究

1806年,法国科学家 L.N.Vanquelin和J.P.Robiquet从天门冬(asparagus)的汁液中分离到天冬酰胺 (asparagine,Asn)。1827年,A.Plisson从蜀葵(hollyhock)(Althaenrosea)根的分离物天冬酰胺中,分离到天冬氨酸。1868年R

血浆激肽释放酶原测定适应症与禁忌

  正常指标:  发色底物法98.03%±14.31%。  异常指标:  升高或降低  检查分析:  (1)升高:妊娠高血压综合征、原发性高血压、脑梗死、癌症化疗后、血液高凝状态、血栓性疾病。  (2)降低:先天性或获得性激肽释放酶缺乏症(肝病、肾性高血压、急性肾功能衰竭、感染性疾病、癌症化疗前、弥

激肽释放酶的组成

  KKS是体内主要的降压系统之一,由激肽原、KLK、激肽酶和激肽组成。激肽家族包括缓激肽(bradykinin,BK,Arg?Pro?Gly?Phe?Ser?Pro?Phe?Arg),赖氨酰缓激肽(Lys?Arg?Pro?Pro?Gly?Phe?Ser?Pro?Phe?Arg),甲硫氨酰?赖氨酰缓

激肽释放酶的作用

血浆型KLK参与凝血和纤溶过程,作用于HMWK释放BK调节血管紧张性、炎症反应以及内源性血液凝固和纤维蛋白溶解过程[5]。组织KLK分解LMWK生成激肽,参与多种生理过程,对血压调节、电解质平衡、炎症反应等生理或病理过程进行调控。激肽主要通过自分泌和旁分泌途径以局部激素形式与2个不同类型的BK受体即

激肽释放酶的作用

  血浆型KLK参与凝血和纤溶过程,作用于HMWK释放BK调节血管紧张性、炎症反应以及内源性血液凝固和纤维蛋白溶解过程[5]。组织KLK分解LMWK生成激肽,参与多种生理过程,对血压调节、电解质平衡、炎症反应等生理或病理过程进行调控[6]。  激肽主要通过自分泌和旁分泌途径以局部激素形式与2个不同类

激肽释放酶的组成

  KKS是体内主要的降压系统之一,由激肽原、KLK、激肽酶和激肽组成。激肽家族包括缓激肽(bradykinin,BK,Arg?Pro?Gly?Phe?Ser?Pro?Phe?Arg),赖氨酰缓激肽(Lys?Arg?Pro?Pro?Gly?Phe?Ser?Pro?Phe?Arg),甲硫氨酰?赖氨酰缓

激肽释放酶的作用

  血浆型KLK参与凝血和纤溶过程,作用于HMWK释放BK调节血管紧张性、炎症反应以及内源性血液凝固和纤维蛋白溶解过程[5]。组织KLK分解LMWK生成激肽,参与多种生理过程,对血压调节、电解质平衡、炎症反应等生理或病理过程进行调控[6]。  激肽主要通过自分泌和旁分泌途径以局部激素形式与2个不同类