相转移催化作用的定义
相转移催化有机合成它是指在相转移催化剂作用下,有机相中的反应物与另一相(水相或固体相)中的反应物发生的化学反应,称为相转移催化(Phase Transfer Catalysis,PTC)反应。例如:PhOH + C4H9Br— → PhOC4H9 + HBr其中苯酚PhOH是固态的,溶于水中。而溴丁烷是液体,溶于有机溶剂中。两种反应物不能同时存在于相同的相中进行接触,所以该反应是属于两相间的亲核取代反应。要完成该反应,可以有以下4种方法:(1)将两种反应物分别溶于水和有机相中,进行强烈搅拌,但所用温度和压力较高,产率低。(2)将溴丁烷改成丁醇,用浓硫酸进行催化。但是由于浓硫酸的腐蚀性强,且温度较高(>140℃),所以该方法受到了限制。(3)用William法合成,即在无水乙醚中,用苯酚钠和C4H9Br直接反应。但是无水操作较麻烦。(4)用四丁基溴化铵为相转移催化剂,可在50℃下进行反应,产率>90%。该方法......阅读全文
相转移催化作用的定义
相转移催化有机合成它是指在相转移催化剂作用下,有机相中的反应物与另一相(水相或固体相)中的反应物发生的化学反应,称为相转移催化(Phase Transfer Catalysis,PTC)反应。例如:PhOH + C4H9Br— → PhOC4H9 + HBr其中苯酚PhOH是固态的,溶于水中。而溴丁
什么是相转移催化作用?
相转移催化作用是指一种催化剂能加速或者能使分别处于互不相溶的两种溶剂(液-液两相体系或固-液两相体系)中的物质发生反应。反应时,催化剂把一种实际参加反应的实体(如负离子)从一相转移到另一相中,以便使它与底物相遇而发生反应。
关于相转移催化作用的简介
相转移催化反应是20世纪60年代开始形成的一门新技术,多应用于非均相反应体系,可以在温和的反应条件下加快反应速率,简化操作过程,提高产品收率,受到了人们极大的关注。相转移催化最初只是应用于烷基化等几类典型的反应中,现已迅速发展到许多化学化工领域。除了应用于有机合成、高分子聚合反应外,还进入了分析
关于相转移催化作用的基本信息介绍
相转移催化作用是指一种催化剂能加速或者能使分别处于互不相溶的两种溶剂(液-液两相体系或固-液两相体系)中的物质发生反应。反应时,催化剂把一种实际参加反应的实体(如负离子)从一相转移到另一相中,以便使它与底物相遇而发生反应。
相转移催化反应的定义介绍
相转移催化有机合成它是指在相转移催化剂作用下,有机相中的反应物与另一相(水相或固体相)中的反应物发生的化学反应,称为相转移催化(Phase Transfer Catalysis,PTC)反应。例如: PhOH + C4H9Br— → PhOC4H9 + HBr 其中苯酚PhOH是固态的,溶于
基因转移的定义
基因转移指应用物理、 化学或生物学方法将目的基因转移入受体细胞内的过程。基因转移技术在基因工程、生物医学研究、基因治疗、植物农作物品种改 造等领域被广泛应用。通过基因转移将遗传信息从一个基因组向另一个基因组转移,使 转移的遗传信息在受者生物表达。
停止转移序列的定义
停止转移序列(stop transfer sequence),肽链上的一段特殊序列,与内质网膜的亲合力很高,能阻止肽链继续进入内质网腔,使其成为跨膜蛋白质。
过继转移的定义
中文名称过继转移英文名称adoptive transfer定 义一种生物治疗方法。即通过输注免疫细胞或免疫分子,将一个接触过抗原的个体(供体)所具有的免疫反应性被动地转移给未被免疫的个体。应用学科免疫学(一级学科),应用免疫(二级学科),免疫治疗(三级学科)
剥离的转移RNA的定义
中文名称剥离的转移RNA英文名称stripped transfer RNA定 义用水解法去除氨酰tRNA分子上的氨基酸所得到的转移RNA。应用学科生物化学与分子生物学(一级学科),方法与技术(二级学科)
转移核糖核酸的定义
大多数tRNA由七十几至九十几个核苷酸折叠形成的三叶草形短链组成,相对分子质量为25000〜30000,沉降常数约为4S。旧称联接RNA、可溶性RNA等。主要作用是携带氨基酸进入核糖体,在mRNA指导下合成蛋白质,即以mRNA为模板,将其中具有密码意义的核苷酸顺序翻译成蛋白质中的氨基酸顺序。tRNA
停止转移序列的定义和功能
停止转移序列(stop transfer sequence),肽链上的一段特殊序列,与内质网膜的亲合力很高,能阻止肽链继续进入内质网腔,使其成为跨膜蛋白质。
吡哆醛的催化作用
众所周知,吡哆醛(维生素B6)经由Schiff碱及其互变异构式(3.106)能进行催化反应(Metzler等,1954)。依赖吡哆醛的一些酶能催化多种氨基酸反应,如脱羧反应、消除反应、转氨反应等。尽管研究了这些反应机理方面的问题,然而对有机化学的影响相当有限。例如Llor和Cortijo(1977)
吡哆醛的催化作用
众所周知,吡哆醛(维生素B6)经由Schiff碱及其互变异构式(3.106)能进行催化反应(Metzler等,1954)。依赖吡哆醛的一些酶能催化多种氨基酸反应,如脱羧反应、消除反应、转氨反应等。尽管研究了这些反应机理方面的问题,然而对有机化学的影响相当有限。例如Llor和Cortijo(197
液相层析的定义
中文名称液相层析英文名称liquid chromatography;LC定 义以液体作为流动相的一种层析法。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
液晶、晶相和液相的定义
液晶------处于液晶态的一种物质;晶相------长程周期性位置/平移有序相;液相------没有长程周期或取向有序的相;
相转移催化反应的优点
相转移催化反应的优点有: ①不需要昂贵的无水溶剂或非质子溶剂; ②增加了反应速度; ③降低了反应温度; ④且在许多情况下操作简便; ⑤可用碱金属氢氧化物的水溶液代替醇盐、氨基钠、氢化钠或金属钠等强碱性物质; ⑥其他特殊的优点,如能进行其他条件下无法进行的反应,改变反应的选择性和产品比
液相层析的基本定义
中文名称液相层析英文名称liquid chromatography;LC定 义以液体作为流动相的一种层析法。应用学科细胞生物学(一级学科),细胞生物学技术(二级学科)
正相层析的基本定义
中文名称正相层析英文名称normal-phase chromatography定 义固定相的极性大于流动相的一种液相层析类型。流动相极性越低,被分离的化合物在层析系统中的保留时间越长。应用学科生物化学与分子生物学(一级学科),方法与技术(二级学科)
酶催化作用机理
酶是催化剂,在催化反应过程中,酶并不消耗,而是在催化过程中,酶和底物生成络合物,在反应完成后,恢复到原来的酶。酶活性中心的结合部位首先决定了酶催化作用的专一性。因此,有人将它比喻为锁和钥匙的关系,提出了"锁和钥匙"模型,指出,酶蛋白的活性部位与底物的形状和大小完全适合时,才能发生催化反应,否则不会发
相转移催化有机合成中的应用
1、亲核取代反应利用卤代物和氰化钾作用,制备腈化物是应用相转移催化技术最早的一类反应。目前,这些反应不但用季铵盐(或季磷盐)、冠醚可以得到良好的结果,而且用三相催化剂也可得到很高的产率。例如在三相催化剂C一2催化下,1—溴辛烷(溶解在苯中) 与KCN的水溶液反应,壬睛的产率为95 %。在一般条件下,
相转移催化反应的优势特点
相转移催化反应的优点有: ①不需要昂贵的无水溶剂或非质子溶剂;②增加了反应速度; ③降低了反应温度; ④且在许多情况下操作简便; ⑤可用碱金属氢氧化物的水溶液代替醇盐、氨基钠、氢化钠或金属钠等强碱性物质; ⑥其他特殊的优点,如能进行其他条件下无法进行的反应,改变反应的选择性和产品比率,通过抑制副反应
相转移催化有机合成中的应用
1、亲核取代反应 利用卤代物和氰化钾作用,制备腈化物是应用相转移催化技术最早的一类反应。目前,这些反应不但用季铵盐(或季磷盐)、冠醚可以得到良好的结果,而且用三相催化剂也可得到很高的产率。例如在三相催化剂C一2催化下,1—溴辛烷(溶解在苯中) 与KCN的水溶液反应,壬睛的产率为95 %。在一般
蛋白激酶A的催化作用
PKA激活后,释放的催化亚基可以催化ATP末端磷酸基团转移到蛋白底物的丝氨酸或苏氨酸残基上。这种磷酸化通常导致底物活性的变化。由于PKA存在于多种细胞中,作用于不同的底物,PKA调节和cAMP调节涉及许多不同的通路。 进一步作用的机制可分为直接蛋白质磷酸化和蛋白质合成: 在蛋白质直接磷酸化过
气相色谱法的定义
气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。
气相色谱法的定义
气相色谱法(gas chromatography 简称GC)是色谱法的一种。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。气相色谱法由于所用的固定相不同,可以分为两种,用固体吸附剂作固定相的叫气固色谱,用涂有固定液的单体作固定相的
相转移催化法合成甘氨酸
将氨水2kg加入1L甲醇,然后加入0.3kg六次亚甲基四胺,待溶液澄清后,加入溶有10kg氯乙酸的2L甲醇,体系温度明显上升,到58℃时,伴有大量结晶析出。待温度下降至室温,上层液体澄清时,过滤得结晶,滤液放置2天,又可析出部分结晶。将上述粗品加入2-3倍量的去离子水,加热至70-75℃,溶解后加入
气相色谱定义及分类
凡是以气相作为流动相的色谱技术,通称为气相色谱。一般可按以下几方面分类:1、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂,(2)气液色谱:固定相是涂在担体表面的液体。2、按过程物理化学原理分类:(1)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。(2)分配色谱:利用
金属氧化物的催化作用
催化作用金属氧化物在催化领域中的地位很重要,它作为主催化剂、助催化剂和载体被广泛使用。就主催化剂而言,金属氧化物催化剂可分为过渡金属氧化物催化剂和主族金属氧化物催化剂,后者主要为固体酸碱催化剂(见酸碱催化作用)。碱金属氧化物、碱土金属氧化物以及氧化铝、氧化硅等主族元素氧化物,具有不同程度的酸碱性,对
金属氧化物的催化作用
金属氧化物在催化领域中的地位很重要,它作为主催化剂、助催化剂和载体被广泛使用。就主催化剂而言,金属氧化物催化剂可分为过渡金属氧化物催化剂和主族金属氧化物催化剂,后者主要为固体酸碱催化剂(见酸碱催化作用)。碱金属氧化物、碱土金属氧化物以及氧化铝、氧化硅等主族元素氧化物,具有不同程度的酸碱性,对离子型(
关于蛋白质的催化作用
细胞中,酶是最被广泛了解和研究最多的蛋白质,它的特点是催化细胞中的各类化学反应。酶的催化反应具有高度的专一性和极高的催化效率。酶在大多数与代谢和异化作用以及DNA的复制、修复和RNA合成等相关的反应中发挥作用。在翻译后修饰作用中,一些酶(如激酶和磷酸酶)可以在其底物蛋白质上增加或去除特定化学基