苹果酸天冬氨酸循环的概念
中文名称苹果酸-天冬氨酸循环英文名称malateaspartate cycle定 义从胞液转运还原当量进入线粒体基质的循环。苹果酸由载体转运入线粒体氧化,转氨形成天冬氨酸,转运出线粒体,再转氨,还原为苹果酸的过程。从而使线粒体外的NADH输入到线粒体内,参与递氢作用。应用学科生物化学与分子生物学(一级学科),新陈代谢(二级学科)......阅读全文
苹果酸天冬氨酸循环的概念
中文名称苹果酸-天冬氨酸循环英文名称malateaspartate cycle定 义从胞液转运还原当量进入线粒体基质的循环。苹果酸由载体转运入线粒体氧化,转氨形成天冬氨酸,转运出线粒体,再转氨,还原为苹果酸的过程。从而使线粒体外的NADH输入到线粒体内,参与递氢作用。应用学科生物化学与分子生物学(
苹果酸天冬氨酸穿梭作用
主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后
苹果酸天冬氨酸穿梭的作用
主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后
底物循环的概念
无效循环(futile cycle):也称之底物循环(substrate cycle)。一对催化两个途径的中间代谢物之间循环的方向相反、代谢上不可逆的反应。有时该循环通过ATP的水解导致热能的释放。例如,葡萄糖+ATP=葡萄糖-6-磷酸+ADP与葡萄糖-6-磷酸+H2O=葡萄糖+Pi反应组成的循环反
氮循环的概念
氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。
α甘油磷酸循环的概念
中文名称α甘油磷酸循环英文名称α-glycerophosphate cycle定 义脑与骨骼肌中线粒体与胞液的α甘油磷酸脱氢酶的辅酶不同,当α甘油磷酸通过线粒体膜脱氢酶催化,使其酶辅基FAD还原为FADH2,进入呼吸链再进一步递氢,而脱氢产生的磷酸二羟丙酮则回到胞液经胞液脱氢酶催化,可利用胞液中辅
吞排循环的概念
中文名称吞排循环英文名称endocytic-exocytic cycle定 义胞吞和胞吐作用的交替进行,质膜不断发生减少和增加的变化,可使细胞的表面积和体积保持不变。应用学科细胞生物学(一级学科),细胞生理(二级学科)
三羧酸循环的概念
三羧酸循环(tricarboxylic acid cycle)是由Hans Adolf Krebs于1937年首先提出,故又称为Krebs循环(尿素循环也是Krebs提出的)。此循环是从活性二碳化合物—乙酰辅酶A和四碳草酰乙酸在线粒体内缩合成含三个羧基的柠檬酸开始,经过一系列脱氢脱羧反应,最后重新生
膜再循环的概念
中文名称膜再循环英文名称membrane recycling定 义细胞的胞吞作用过程中部分质膜(包括受体等)以膜囊的形式进入细胞内,卸载胞吞物质后,膜囊又返回质膜,重被利用的再循环过程。应用学科细胞生物学(一级学科),细胞结构与细胞外基质(二级学科)
ATP循环的概念和过程
ATP作为细胞内放能与吸能反应的主要中间媒介物,在各种生命活动及代谢过程中直接或间接起供能作用。ATP为腺苷三磷酸,3个磷酸之间有2个磷酸酯键。当ATP水解成ADP时释放的能量比一般磷酸酯键水解时释放出的能量多得多,因而可以使需要加入自由能的吸能反应得以进行。而ADP与无机磷酸盐又可利用生物氧化时释
乙醛酸循环的概念
乙醛酸循环是植物和某些微生物(大肠杆菌、醋酸杆菌等)及一些无脊椎动物细胞内脂肪酸氧化分解为乙酰CoA之后,在乙醛酸循环体(glyoxysome)内生成琥珀酸、乙醛酸和苹果酸;此琥珀酸可用于糖的合成的过程。大多数动物和人类细胞中没有乙醛酸循环体,无法将乙酰CoA转变为糖。油料植物种子(花生、油菜、棉籽
碳同化C4途径介绍
在前人研究的基础上,Hatch和Slack(1966)发现甘蔗和玉米等的CO2固定最初的稳定产物是四碳二羧酸化合物(苹果酸和天冬氨酸),故称为四碳二羧酸途径(C4 - dicarboxylicacidpathway),简称C4途径,亦称为Hatch-Slack途径。具有这种碳同化途径的植物称为C4植
三羧酸循环的概念和方式
三羧酸循环(tricarboxylic acid cycle)是由Hans Adolf Krebs于1937年首先提出,故又称为Krebs循环(尿素循环也是Krebs提出的)。此循环是从活性二碳化合物—乙酰辅酶A和四碳草酰乙酸在线粒体内缩合成含三个羧基的柠檬酸开始,经过一系列脱氢脱羧反应,最后重新生
卡尔文循环的概念
卡尔文循环(Calvin cycle),一译开尔文循环,又称光合碳循环(碳反应)。是一种类似于克雷布斯循环(Krebs cycle,或称柠檬酸循环)的新陈代谢过程,可使其动物质以分子的形态进入和离开此循环后发生再生。碳以二氧化碳的形态进入并以糖的形态离开卡尔文循环。整个循环是利用ATP作为能量来源,
关于光合作用的碳同化的基本内容
CO2同化(CO2assimilation)是光合作用过程中的一个重要方面。碳同化是通过和所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。其中以卡尔文循环为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的
MDH2基因的结构特点和生理作用
苹果酸脱氢酶在柠檬酸循环中利用NAD/NADH辅因子体系催化苹果酸对草酰乙酸的可逆氧化。由该基因编码的蛋白质定位于线粒体,可能在苹果酸-天冬氨酸穿梭中发挥关键作用,在细胞溶胶和线粒体之间的代谢协调中起作用已经发现了一些编码不同亚型的转录变体。
天冬氨酸分析
2019-04-22作者:浏览次数:75 来源:上海宸乔生物科技有限公司 天冬氨酸分析 ReproSil-TG-Chiral, 5um (250 x 3 mm), 流速: 0.6 ml/min 检测波长: Fluo.: 263/313 nm D,L FMOC-Asp
草酰乙酸参与的反应介绍
草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。作为α-酮酸,其酮基碳可受亲核进攻,例如:草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;作为β-酮酸,草酰乙酸稳定性不强,易脱羧。例子
关于草酰乙酸的参与反应介绍
草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。 作为α-酮酸,其酮基碳可受亲核进攻,例如: 草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸; 草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步; 作为β-酮酸,草酰乙酸稳定
淋巴细胞再循环库的概念
中文名称淋巴细胞再循环库英文名称lymphocyte recirculating pool定 义分布于血液、淋巴液和组织间参与再循环的淋巴细胞的总称。应用学科免疫学(一级学科),免疫系统(二级学科),免疫细胞(三级学科)
鸟氨酸循环的概念和研究历史
氨基酸在体内代谢时,产生的氨,经过鸟氨酸再合成尿素的过程称为鸟氨酸循环(Ornithine cycle) ,又称尿素循环(urea cycle)。当氨基酸代谢的最终产物——氨在体内浓度甚高时对细胞有剧毒,小部分氨可重新合成氨基酸及其他含氮化合物,绝大部分氨则通过鸟氨酸循环合成尿素,随尿排出,以解除氨
生物氧化的氧化作用过程
糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。(一)α-磷酸甘油穿梭作用这种作用主要存在于脑、骨骼肌
关于胞液氧化的基本内容介绍
糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。 α-磷酸甘油穿梭作用 这种作用主要存在于脑、
关于生物氧化的氧化作用
糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。 (一)α-磷酸甘油穿梭作用 这种作用主要存在
MDH2基因突变与药物因子介绍
苹果酸脱氢酶在柠檬酸循环中利用NAD/NADH辅因子体系催化苹果酸对草酰乙酸的可逆氧化。由该基因编码的蛋白质定位于线粒体,可能在苹果酸-天冬氨酸穿梭中发挥关键作用,在细胞溶胶和线粒体之间的代谢协调中起作用已经发现了一些编码不同亚型的转录变体。[由RefSeq提供,2013年9月]Malate deh
MDH2基因编码功能及结构描述
苹果酸脱氢酶在柠檬酸循环中利用NAD/NADH辅因子体系催化苹果酸对草酰乙酸的可逆氧化。由该基因编码的蛋白质定位于线粒体,可能在苹果酸-天冬氨酸穿梭中发挥关键作用,在细胞溶胶和线粒体之间的代谢协调中起作用已经发现了一些编码不同亚型的转录变体。[由RefSeq提供,2013年9月]Malate deh
关于NADH的氧化的基本内容介绍
体内很多物质氧化分解产生NADH,线粒体内生成的NADH可直接通过呼吸链进行氧化磷酸化,而胞液中生成的NADH由于不能自由透过线粒体内膜,故需通过某种转运机制,将氢转移到线粒体内,重新生成NADH或FADH2后再参加氧化磷酸化。这种转运机制主要有α-磷酸甘油穿梭和苹果酸穿梭。 (一)3-磷酸甘
《细胞》:细胞增殖刹车分子天门冬氨酸
天冬氨酸是生物体内赖氨酸、苏氨酸、异亮氨酸、蛋氨酸等氨基酸及嘌呤、嘧啶碱基的合成前体。增殖细胞需要制造大量RNA、DNA和蛋白质,因此必须有足够天冬氨酸存在。天冬氨酸虽然也是组成蛋白质的基本元件,但不像其它氨基酸,血液中天冬氨酸很少,细胞需要自己制造天冬氨酸,为了制造天冬氨酸及核酸,细胞需要接受
呼吸链介绍(五)
(二)氧化呼吸链1.NADH氧化呼吸链 人体内大多数脱氢酶都以NAD+作辅酶,在脱氢酶催化下底物SH2脱下的氢交给NAD+生成NADH+H+,在NADH脱氢酶作用下,NADH+H+将两个氢原子传递给FMN生成FMNH2,再将氢传递至CoQ生成CoQH2,此时两个氢原子解离成2H++2e,2H+游离于
非循环光合磷酸化的概念
中文名称非循环光合磷酸化英文名称noncyclic photophosphorylation定 义叶绿体光系统吸收的光能用于产生ATP和NADPH的过程。应用学科细胞生物学(一级学科),细胞生理(二级学科)