苹果酸天冬氨酸穿梭作用

主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后者再经酸性氨基酸载体转运出线粒体转变成草酰乙酸。......阅读全文

苹果酸天冬氨酸穿梭作用

主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后

苹果酸天冬氨酸穿梭的作用

主要存在肝和心肌中。1摩尔G→32摩尔ATP胞液中的NADH在苹果酸脱氢酶催化下,使草酰乙酸还原成苹果酸,后者借助内膜上的α-酮戊二酸载体进入线粒体,又在线粒体内苹果酸脱氢酶的催化下重新生成草酰乙酸和NADH。NADH进入NADH氧化呼吸链,生成3分子ATP。草酰乙酸经谷草转氨酶催化生成天冬氨酸,后

苹果酸天冬氨酸循环的概念

中文名称苹果酸-天冬氨酸循环英文名称malateaspartate cycle定  义从胞液转运还原当量进入线粒体基质的循环。苹果酸由载体转运入线粒体氧化,转氨形成天冬氨酸,转运出线粒体,再转氨,还原为苹果酸的过程。从而使线粒体外的NADH输入到线粒体内,参与递氢作用。应用学科生物化学与分子生物学(

关于NADH的氧化的基本内容介绍

  体内很多物质氧化分解产生NADH,线粒体内生成的NADH可直接通过呼吸链进行氧化磷酸化,而胞液中生成的NADH由于不能自由透过线粒体内膜,故需通过某种转运机制,将氢转移到线粒体内,重新生成NADH或FADH2后再参加氧化磷酸化。这种转运机制主要有α-磷酸甘油穿梭和苹果酸穿梭。  (一)3-磷酸甘

呼吸链介绍(五)

(二)氧化呼吸链1.NADH氧化呼吸链 人体内大多数脱氢酶都以NAD+作辅酶,在脱氢酶催化下底物SH2脱下的氢交给NAD+生成NADH+H+,在NADH脱氢酶作用下,NADH+H+将两个氢原子传递给FMN生成FMNH2,再将氢传递至CoQ生成CoQH2,此时两个氢原子解离成2H++2e,2H+游离于

《细胞》:细胞增殖刹车分子天门冬氨酸

  天冬氨酸是生物体内赖氨酸、苏氨酸、异亮氨酸、蛋氨酸等氨基酸及嘌呤、嘧啶碱基的合成前体。增殖细胞需要制造大量RNA、DNA和蛋白质,因此必须有足够天冬氨酸存在。天冬氨酸虽然也是组成蛋白质的基本元件,但不像其它氨基酸,血液中天冬氨酸很少,细胞需要自己制造天冬氨酸,为了制造天冬氨酸及核酸,细胞需要接受

生物氧化的氧化作用过程

糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。(一)α-磷酸甘油穿梭作用这种作用主要存在于脑、骨骼肌

关于生物氧化的氧化作用

  糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。  (一)α-磷酸甘油穿梭作用  这种作用主要存在

关于胞液氧化的基本内容介绍

  糖代谢中的三羧酸循环和脂肪酸β-氧化是在线粒体内生成NADH(还原当量),可立即通过电子传递链进行氧化磷酸化。在细胞的胞浆中产生的NADH ,如糖酵解生成的NADH则要通过穿梭系统(shuttle system)使NADH的氢进入线粒体内膜氧化。  α-磷酸甘油穿梭作用  这种作用主要存在于脑、

α磷酸甘油穿梭作用

这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的AT

MDH2基因的结构特点和生理作用

苹果酸脱氢酶在柠檬酸循环中利用NAD/NADH辅因子体系催化苹果酸对草酰乙酸的可逆氧化。由该基因编码的蛋白质定位于线粒体,可能在苹果酸-天冬氨酸穿梭中发挥关键作用,在细胞溶胶和线粒体之间的代谢协调中起作用已经发现了一些编码不同亚型的转录变体。

α磷酸甘油穿梭的作用

这种作用主要存在于脑、骨骼肌中,载体是α-磷酸甘油。胞液中的NADH在α-磷酸甘油脱氢酶的催化下,使磷酸二羟丙酮还原为α-磷酸甘油,后者通过线粒体内膜,并被内膜上的α-磷酸甘油脱氢酶(以FAD为辅基)催化重新生成磷酸二羟丙酮和FADH2,后者进入琥珀酸氧化呼吸链。葡萄糖在这些组织中彻底氧化生成的AT

MDH2基因突变与药物因子介绍

苹果酸脱氢酶在柠檬酸循环中利用NAD/NADH辅因子体系催化苹果酸对草酰乙酸的可逆氧化。由该基因编码的蛋白质定位于线粒体,可能在苹果酸-天冬氨酸穿梭中发挥关键作用,在细胞溶胶和线粒体之间的代谢协调中起作用已经发现了一些编码不同亚型的转录变体。[由RefSeq提供,2013年9月]Malate deh

MDH2基因编码功能及结构描述

苹果酸脱氢酶在柠檬酸循环中利用NAD/NADH辅因子体系催化苹果酸对草酰乙酸的可逆氧化。由该基因编码的蛋白质定位于线粒体,可能在苹果酸-天冬氨酸穿梭中发挥关键作用,在细胞溶胶和线粒体之间的代谢协调中起作用已经发现了一些编码不同亚型的转录变体。[由RefSeq提供,2013年9月]Malate deh

穿梭箱实验

实验方法原理以光(或声)、电击为联合刺激,使实验动物由被动回避建立主动的条件反射。记录此条件反射建立过程中的主动回避反应指标可反应实验动物的学习、记忆能力的变化。实验材料大鼠小鼠仪器、耗材穿梭箱实验步骤1. 训练 先让动物在测试箱中自由活动5min,以消除探究反射。将大鼠置于穿梭实验箱电击区。先给予

穿梭箱实验

实验方法原理 以光(或声)、电击为联合刺激,使实验动物由被动回避建立主动的条件反射。记录此条件反射建立过程中的主动回避反应指标可反应实验动物的学习、记忆能力的变化。实验材料 大鼠小鼠仪器、耗材 穿梭箱实验步骤 1. 训练 先让动物在测试箱中自由活动5min,以消除探究反射。将大鼠置于穿梭实验箱电击区

天冬氨酸在体内的作用是什么?

  天冬氨酸在体内的作用是多方面的。它不仅参与蛋白质的合成,促进身体组织和器官的构建,而且对神经系统的正常生理活动、酸碱平衡、生长发育以及肝脏解毒等方面都起着至关重要的作用。  具体来说,天冬氨酸有助于触发体内的克雷布斯循环和尿素循环,从而将能量输送到线粒体,并帮助产生一种关键酶:氮甲酰磷酸。在临床

苹果酸酶的定义和作用机制

苹果酸酶 malic enzyme催化苹果酸生成丙酮酸的酶。其与苹果酸脱氢酶(Malate dehydrogenase)是两种不同的酶,应予以区分。已知有三种苹果酸酶(ME1.1.1.38—40)。其中以NADP为受体的酶(ME1.1.1.40)催化生成下列反应:ΔG°′=-0.36千卡。丙酮酸羧化

天冬氨酸分析

  2019-04-22作者:浏览次数:75 来源:上海宸乔生物科技有限公司   天冬氨酸分析   ReproSil-TG-Chiral, 5um (250 x 3 mm),   流速: 0.6 ml/min   检测波长: Fluo.: 263/313 nm   D,L FMOC-Asp

碳同化C4途径介绍

在前人研究的基础上,Hatch和Slack(1966)发现甘蔗和玉米等的CO2固定最初的稳定产物是四碳二羧酸化合物(苹果酸和天冬氨酸),故称为四碳二羧酸途径(C4 - dicarboxylicacidpathway),简称C4途径,亦称为Hatch-Slack途径。具有这种碳同化途径的植物称为C4植

关于光合作用的碳同化的基本内容

  CO2同化(CO2assimilation)是光合作用过程中的一个重要方面。碳同化是通过和所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。其中以卡尔文循环为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的

医学微生物学(Medical-Microbiology)词汇归纳(三)

domain 域,结构域,功能区donor site 给位double helix 双螺旋effector 效应器,效应物elongation 延长endopeptidase 内肽酶enhancer 增强子enolphosphopyruvate 磷酸烯醇式丙酮酸 enzyme 酶es

关于糖异生作用的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

关于糖异生的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

关于糖原异生作用的途径介绍

  当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。  这三步反应都是强放热反应,它们分别是:  1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5

糖异生的反应途径

当肝或肾以丙酮酸为原料进行糖异生时,糖异生中的其中七步反应是糖酵解中的逆反应,它们有相同的酶催化。但是糖酵解中有三步反应,是不可逆反应。在糖异生时必须绕过这三步反应,代价是更多的能量消耗。这三步反应都是强放热反应,它们分别是:1、葡萄糖经己糖激酶催化生成6磷酸葡萄糖 ΔG= -33.5 kJ/mol

乙醛酸循环的反应过程介绍

  脂肪酸经过β-氧化分解为乙酰CoA,在柠檬酸合成酶的作用下乙酰CoA与草酰乙酸缩合为柠檬酸,再经乌头酸酶催化形成异柠檬酸。随后,异柠檬酸裂解酶(isocitratelyase)将异柠檬酸分解为琥珀酸和乙醛酸。再在苹果酸合酶(malate synthetase)催化下,乙醛酸与乙酰CoA结合生成苹

关于草酰乙酸的参与反应介绍

  草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。  作为α-酮酸,其酮基碳可受亲核进攻,例如:  草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;  草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;  作为β-酮酸,草酰乙酸稳定

草酰乙酸参与的反应介绍

草酰乙酸既是一种α-酮酸也是一种β-酮酸,它同时具有两种官能团的性质。作为α-酮酸,其酮基碳可受亲核进攻,例如:草酰乙酸发生 C-α 转氨基作用,得到天冬氨酸;草酰乙酸与乙酰CoA缩合,得柠檬酸。这是三羧酸循环中的关键反应之一,一般认为是启动循环的一步;作为β-酮酸,草酰乙酸稳定性不强,易脱羧。例子

交替氧化酶途径参与光破坏防御新机制

     交替氧化酶途径(alternative pathway; AP)是植物线粒体中细胞色素氧化酶途径之外的一条非磷酸化电子传递途径,可以不受跨膜质子梯度和ADP可用性的限制快速消耗线粒体内的还原力,从而防止逆境下线粒体内的活性氧产生,保护线粒体。此外,交替氧化酶途径可以缓解强光下叶绿体内的