重原子同位素效应

以上介绍的大都是 H/D 的同位素效应 ,它们可以用体系的 kH 、kD 以及 kT 的比值来表示 。在实验过程中 , 还用到其他重原子同位素效应( Heavy-atom Isotope Effect), 例如 C 、N 、O 、P 、Br等。这些元素的同位素效应涉及到的大都是一级同位素效应 , 但数值一般比较小 , 例如在25 ℃时,最大值的几个元素的速率常数比值为: k12/ k13 =1 . 04 ; k12/ k 14 =1 . 07 ; k14/ k 15 =1 . 03 ;k 16/ k 18 =1 . 02 。这些比值虽小 , 精度却很高, 可以用于反应机理研究, 但需要精密的仪器。......阅读全文

重原子同位素效应

以上介绍的大都是 H/D 的同位素效应 ,它们可以用体系的 kH 、kD 以及 kT 的比值来表示 。在实验过程中 , 还用到其他重原子同位素效应( Heavy-atom Isotope Effect), 例如 C 、N 、O 、P 、Br等。这些元素的同位素效应涉及到的大都是一级同位素效应 , 但

蒸气压同位素效应

同位素质量的相对差别越大,所引起的物理和化学性质上的差别也越大。对于轻元素同位素化合物的各种热力学性质已作过足够精密的测定。热力学同位素效应研究中最重要的,是同位素交换反应平衡常数的研究,已在实验和理论方面进行了大量工作。蒸气压同位素效应也很重要,已可半定量地进行理论计算。热力学同位素效应是轻元素同

不同同位素效应介绍

①光谱同位素效应,因同位素核质量的不同使原子或分子的能级发生变化,从而引起光谱谱线位移。这一效应不仅用于分析同位素,更重要的是用于研究分子结构。②热力学同位素效应,同位素的质量差别越大,其物理、化学性质的差别也越大,是轻同位素分离的理论基础。③动力学同位素效应,同位素的取代使反应物的能态发生变化,可

同位素效应是什么?

1、同位素效应是指同位素是同一元素的化学性质相同,但原子量不同的原子,因此不能用化学方法将其分开,在观察原子光谱时能发现有微小的差异,这种效应称为同位素效应。2、由于质量或自旋等核性质的不同而造成同一元素的同位素原子(或分子)之间物理和化学性质有差异的现象。同位素效应指的是同一元素的同位素或者含该元

什么是光谱同位素效应?

同位素核质量的不同使原子或分子的能级发生变化,引起原子光谱或分子光谱的谱线位移。核自旋的不同,引起光谱精细结构的变化。如果分子中某些元素一部分被不同的同位素取代,从而破坏了分子的对称性,则能引起谱线分裂,并在红外光谱和并合散射光谱的振动结构中出现新的谱线和谱带。

动力学同位素效应

动力学同位素效应( Kinetic Isotope Effect ,KIE),由于同位素的存在而造成反应速率上的差别,数值上等于较轻同位素参加反应的速率常数与较重同位素参加反应的速率常数的比值,动力学同位素效应和反应物的 ΔG ≠有关。同一元素的同位素具有相同的电子构型,因而具有相似的化学性质 。但

二级同位素效应

在有些被观察到的同位素效应中, 被取代的氢原子和反应没有直接的关系 ,同位素参与的化学键不发生断裂, 但可能减弱或者重新杂化 ,并且在反应中是速度决定步骤 ,这样的效应叫二级同位素效应( Secondary Isotope Effect)。这类效应比一级同位素效应小 ,通常 kH/ kD 在 0 .

一级同位素效应概念

当一个反应进行时, 在速度决定步骤中发生反应物分子的同位素化学键的形成或断裂反应,将显现出一级同位素效应( Primary Isotope Effect)。一级同位素效应的机理现已很清楚 ,即由于同位素质量不同, 反应物的零点能不同, 从而导致各自的反应速率不同 。用数学式表示为:其中 k 是与温度

原子猝灭效应

荧光的猝灭(熄灭)一词,从广义上说,指的是任何可使某给定荧光物质的荧光强度降低的作用,或者任何可使荧光强度不与荧光物质的浓度呈线性关系的作用。从狭义上说,指的是荧光物质分子与溶剂分子或其它溶质分子之间的相互作用,导致荧光强度降低的现象。

中国科大三维原子尺度上测定铁基超导材料同位素效应

  近日,中国科大国家同步辐射实验室吴自玉教授研究小组和微尺度物质科学国家实验室陈仙辉教授研究小组利用X射线吸收谱学,在三维原子尺度上研究了铁基超导材料的同位素效应,取得了重要进展。这一成果发表在4月29日自然出版集团的Scientific Reports(《科学报告》)上。   自2008年

揭示全球稳定同位素“反高程效应”原因

7月28日,《自然-通讯》杂志在线发表了中国科学院青藏高原研究所环境变化与多圈层过程团队余武生研究员联合美国俄亥俄州立大学Lonnie Thompson教授和澳大利亚詹姆斯库克大学Stephen Lewis博士等的最新研究成果。研究发现,在全球尺度上,从大气水汽稳定同位素的新视角,可以系统地揭

原子荧光猝灭效应

荧光的猝灭(熄灭)一词,从广义上说,指的是任何可使某给定荧光物质的荧光强度降低的作用,或者任何可使荧光强度不与荧光物质的浓度呈线性关系的作用。从狭义上说,指的是荧光物质分子与溶剂分子或其它溶质分子之间的相互作用,导致荧光强度降低的现象。

原子荧光的饱和效应

当激发辐射强度增加到一定程度时,基态原子达到饱和吸收状态,激发态原子数不再增加,原子荧光强度不再随光源强度增加而增加的效应。

研究揭示全球稳定同位素“反高程效应”原因

8月1日,中国科学院青藏高原研究所发布消息,该所环境变化与多圈层过程团队余武生研究员联合美国俄亥俄州立大学Lonnie Thompson教授和澳大利亚詹姆斯库克大学Stephen Lewis博士等研究发现,在全球尺度上,从大气水汽稳定同位素的新视角,可以系统地揭示不同地表介质稳定同位素出现“反

科学家揭示俯冲带重硼同位素循环

  硼是一个具有中等挥发性、质量较轻的亲石元素,在熔/流体活动中容易发生迁移。硼有两个稳定同位素(10B和11B),二者之间较大的质量差(~10%)导致地球上不同端元之间硼同位素差异明显。因此,硼及其同位素对探究熔/流体参与的地质过程和物质循环具有重要意义。目前,大量学者对地球表生环境和相关过程(如

PNAS:发现阿司匹林的第二重效应

  类激素脂质化合物前列腺素与头痛、关节炎、痛经和创面脓毒症等多种疾病相关,环氧合酶是前列腺素生成的一个关键催化剂。广受欢迎的非甾体抗炎药如阿司匹林、萘普生(Aleve)和布洛芬等,都是通过抑制或破坏环氧合酶来起作用。  在发表在本周《美国国家科学院院刊》(PNAS)上的一篇新研究论文中,

英培育出富含重同位素的“重鼠”--揭示了骨骼的形成过程

   研究人员16日在美国《科学》杂志上报告说,他们培育出世界首批“重鼠”,这些实验鼠体内富含不具有放射性的两种重同位素。研究人员说,这一成果帮助揭示了骨骼的形成过程,也将有助于培育不被排异的移植用人体组织器官。   论文第一作者、英国剑桥大学的周咏莹博士对新华社记者说,他们在普通鼠粮中加入含有碳-

首次实现在原子尺度上研究同位素界面

北京大学物理学院高鹏、陈基、王恩哥院士课题组等与材料科学与工程学院刘磊等课题组合作,首次实现了在原子尺度上对同位素界面的研究。该研究成果以《同位素界面上的声子转变》为题于日前在国际学术期刊《自然·通讯》发表。  据介绍,原子尺度上探测同位素界面极具挑战,目前具有原子尺度分辨能力的实验技术只有扫描探针

质谱流式的同位素是原子还是离子

晚上好,这是不可以的,你把概念搞混了。同位素是针对原子的,指的是相同质子数,不同中子数的原子之间互称同位素。而离子说的是原子或原子团失去或获得电子的事情,两者是不相关的。当然,即使构成氧原子和氧离子的原子钟含有的中子数目不同,也不能互称同位素。

硫同位素非质量依赖分馏效应的来源研究获进展

  近日,中国科学院广州地球化学研究所(以下简称广州地化所)研究员林莽团队在五硫同位素非质量依赖分馏效应的来源研究中取得进展,为地外样品的行星化学分析和数据解读带来启示。相关研究以主封面文章的形式发表于《美国化学会地球和空间化学》(ACS Earth and Space Chemistry)。  近

重空心原子实验研究取得进展

空心原子是指内壳缺失多个电子,而外壳仍全部或者部分填充电子的特殊原子。这类远离平衡态的多激发态原子的产生机制、内部结构及退激属性,不仅是研究量子电动力学和理解量子多体相互作用的有效载体,在内壳电离X射线激光、高能量密度物理及分子成像等领域也具有重要的应用价值。近期,中国科学院近代物理研究所科研团队与

极稀有同位素钙41实现单原子灵敏检测

  中国科学技术大学教授卢征天等人,利用原子阱痕量分析方法实现了对极稀有同位素钙-41的单原子灵敏检测,将该同位素丰度的检测极限压低至10-17(十亿亿分之一)量级,并演示了对骨头、岩石、海水等典型样品的钙-41同位素分析。此项工作解决了地质、生物样品中钙-41同位素的探测难题,使得钙-41有望作为

原子吸收光谱法的干扰效应概述

  原子吸收光谱分析法与原子发射光谱分析法相比,尽管干扰较少并易于克服,但在实际工作中干扰效应仍然经常发生,而且有时表现得很严重,因此了解干扰效应的类型、本质及其抑制方法很重要。原子吸收光谱中的干扰效应一般可分为四类:物理干扰、化学干扰、电离干扰和光谱干扰。

在原子吸收分析中干扰效应大致有哪些

(1)物理干扰物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应。属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等。物理干扰是非选择性干扰,对试样各元素的影响基本是相似的。 配制与被测试样相似的标准样品,是消除物理干扰的常用的方法。在不知道试样组成或无法匹配试样时,可

原子吸收法中干扰效应比原子发射光谱法要小

  总的来说,原子吸收法中干扰效应比原子发射光谱法要小得多,原因如下:  ①.AAS法中使用锐线光源,应用的是共振吸收线,而吸收线的数目比发射线少得多,光谱重叠的几率小,光谱干扰少;  ②.AAS法中,涉及的是基态原子,故受火焰温度的影响小。但在实际工作中,干扰仍不能忽视,要了解其产生的原因及消除办

近代物理所等合成新核素钚227

  中国科学院近代物理研究所与合作者发现了钚元素的一个新的同位素钚-227。10月3日,相关研究成果发表在《物理评论C》(Physical Review C)上。  当原子核的核子数等于某些特殊的数目时(2、8、20、28、50、82、126),原子核特别稳定,形状接近球形。这些数字被称为幻数。而幻

研究发现新核素220Np并检验到Np同位素的N=126的壳效应

  近日,中国科学院近代物理研究所、广西师范大学、北京大学、同济大学、中科院理论物理研究所、俄罗斯联合核子研究所等国内外9家单位的科研人员利用兰州重离子加速器的充气反冲核谱仪SHANS装置开展了相关实验,在N ≈ 126的轻锕系核区首次观测到了Z = 93的新核素220Np,这是继发现新核素219,

我国在土壤反硝化过程的氮同位素分馏效应研究获进展

  反硝化过程被认为是生态系统气态氮损失的主要途径,也是导致生态系统氮限制的重要机制。但是,由于缺乏从生态系统尺度上直接测定反硝化作用速率的技术,在过去对氮循环的研究中,生态系统尺度上的反硝化速率一直难以量化。近年来,硝酸盐的15N/14N比值被用于量化生态系统尺度上的反硝化速率。但是,利用15N同

放射性同位素示踪原子的应用介绍

  将一种稳定的化学元素和它的具有放射性的同位素混合在一起,当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,测量这些射线便可确定其位置与数量。只要测出了放射性同位素的分布和动向,就能确定稳定化学元素的各种作用。这种方法称为示踪原子方法,应用很广泛。  (1)在石油工业上的应用。将含放射

星体极端引力效应首次以氧原子形式被揭露

  据美国每日科学网6月22日报道,荷兰空间研究组织(SRON)与乌得勒支大学天文学家近日探测到一类模糊的氧信号,证实其来自于一颗中子星“鲸吞”其同伴白矮星所发出的X射线。这是星体的极端引力效应首次以氧原子而不是铁原子的形式被揭露出来。   每一种原子都会有其特殊的光谱线。一直以来