自噬信号通路研究背景
2016年诺贝尔生理学或医学奖的自噬是一种动态细胞循环系统,导致大量细胞质内容物的自噬溶酶体降解、异常蛋白质聚集以及过量或受损的细胞器。自噬诱导的关键调节因子是mTOR激酶,它激活了抑制自噬的mTOR(Akt和MAPK信号),而mTOR的负调节(AMPK和p53信号)促进了自噬。ULK与酵母Atg1的作用相似,作用于mTOR复合体的下游。ULK与Atg13和支架蛋白FIP200形成一个大的复合物。诱导自噬需要含有hVps34、Beclin-1(酵母Atg6的哺乳动物同源物)、p150(酵母Vps15的哺乳动物同源物)和Atg14样蛋白(Atg14L或Barkor)或紫外线辐射抗性相关基因(UVRAG)的III类PI3K复合物。Rubicon抑制PI3K III类脂质激酶活性,并对抗PI3K III类活性增强剂Atg14L的作用。Atg基因通过Atg12-Atg5和LC3-II(Atg8-II)复合物控制自噬体的形成。Atg12在......阅读全文
自噬信号通路研究背景
2016年诺贝尔生理学或医学奖的自噬是一种动态细胞循环系统,导致大量细胞质内容物的自噬溶酶体降解、异常蛋白质聚集以及过量或受损的细胞器。自噬诱导的关键调节因子是mTOR激酶,它激活了抑制自噬的mTOR(Akt和MAPK信号),而mTOR的负调节(AMPK和p53信号)促进了自噬。ULK与酵母Atg1
自噬信号通路相关MTOR
雷帕霉素(mTOR)的哺乳动物靶标,也称为雷帕霉素和FK506结合蛋白12-雷帕霉素相关蛋白1(FRAP1)的机制靶标,是人类中由MTOR基因编码的激酶。 mTOR是蛋白激酶的磷脂酰肌醇3-激酶相关激酶家族的成员。 mTOR与其他蛋白质结合,并作为两种不同蛋白质复合物的核心成分,mTOR复合物1和m
自噬信号通路相关MYCN
这个基因是myc家族的一员,编码一个具有基本螺旋-环-螺旋(bhlh)结构域的蛋白质。这种蛋白位于细胞核内,必须与另一种bhlh蛋白二聚以结合DNA。这种基因的扩增与多种肿瘤有关,尤其是神经母细胞瘤。该基因有多种编码不同亚型的选择性剪接转录变体。This gene is a member of th
自噬信号通路相关KMT2A
该基因编码一个转录辅激活子,在早期发育和造血过程中起到调节基因表达的重要作用。编码蛋白包含多个保守功能域。其中一个域,即集合域,负责其组蛋白H3赖氨酸4(H3K4)甲基转移酶活性,介导与表观遗传转录激活相关的染色质修饰。这种蛋白由酶Taspase 1加工成两个片段,MLL-C和MLL-N。这些片段重
自噬信号通路相关PARP1
聚[ADP-核糖]聚合酶1(PARP-1)也称为NAD + ADP-核糖基转移酶1或聚[ADP-核糖]合酶1是人类中由PARP1基因编码的酶。 它是PARP家族的酶之一。 PARP1的工作原理: · 通过聚ADP-核糖基化修饰核蛋白。 · 与BRCA一起发挥作用于双链; PARP家庭的成员以单股行事
VEGF信号通路研究背景
血管内皮生长因子(VEGF)是一个刺激新血管生长的生长因子亚家族。血管内皮生长因子是重要的信号蛋白,参与血管生成(胚胎循环系统的从头形成)和血管生成(先存血管的血管生长)。VEGF-A是血管内皮生长因子家族的第一个成员,也包括VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(PlGF)。在发现
AKT信号通路研究背景
Akt通路或PI3K-Akt通路参与基本的细胞过程,包括蛋白质合成、增殖和存活。AKT也在血管生成和代谢中发挥调节作用。AKT途径被诱导PI3K的因子激活,PI3K反过来激活mTOR途径。AKT信号通路在许多细胞生存途径中起着重要的调节作用,主要是作为凋亡抑制剂。AKT信号转导与多种癌症有关,是抗癌
TNF信号通路研究背景
肿瘤坏死因子(TNF)超家族的细胞因子激活细胞存活、死亡和分化的信号通路。肿瘤坏死因子超家族成员通过配体介导的三聚体作用,导致多个细胞内适配器的募集,以激活多种信号转导途径。含有Fas相关死亡结构域(FADD)和TNFR相关死亡结构域(TRADD)等适配器的死亡结构域(DD)的募集可导致诱导细胞凋亡
AMPK信号通路研究背景
AMPK信号通路是一种燃料传感器和调节器,促进各种组织中ATP的产生并抑制ATP的消耗途径。AMPK是一种异三聚体复合物,由催化α亚单位和调节β和γ亚单位组成。该激酶在应对耗尽细胞ATP供应的应激时被激活,如低血糖、缺氧、缺血和热休克。AMP与γ亚单位的结合变构激活复合物,使其成为其主要上游AMPK
EGFR信号通路研究背景
EGF(表皮生长因子)是EGF蛋白质家族的创始成员,该家族还包括双调蛋白(AREG)、β-乙酰球蛋白(BTC)、表调节素(EPR)、HB-EGF、神经调节蛋白等。表皮生长因子家族成员具有高度相似的结构和功能特征。它们至少有一个共同的结构基序,即EGF结构域,由六个保守的半胱氨酸残基组成,形成三个二硫
与自噬信号通路相关因子介绍MYCn
这个基因是myc家族的一员,编码一个具有基本螺旋-环-螺旋(bhlh)结构域的蛋白质。这种蛋白位于细胞核内,必须与另一种bhlh蛋白二聚以结合DNA。这种基因的扩增与多种肿瘤有关,尤其是神经母细胞瘤。该基因有多种编码不同亚型的选择性剪接转录变体。This gene is a member of th
与自噬信号通路相关因子介绍MTOR
雷帕霉素(mTOR)的哺乳动物靶标,也称为雷帕霉素和FK506结合蛋白12-雷帕霉素相关蛋白1(FRAP1)的机制靶标,是人类中由MTOR基因编码的激酶。 mTOR是蛋白激酶的磷脂酰肌醇3-激酶相关激酶家族的成员。 mTOR与其他蛋白质结合,并作为两种不同蛋白质复合物的核心成分,mTOR复合物1和m
缺口信号通路研究背景
Notch信号通路是一种高度保守的细胞信号系统,存在于大多数多细胞生物中。Notch信号在许多基本细胞过程的调节中起着关键作用,如胚胎和成人发育期间的增殖、干细胞维持和分化。notch级联包括notch和notch配体,以及将notch信号传递到细胞核的细胞内蛋白质。在哺乳动物细胞中,有四种不同的n
经典Wnt信号通路研究背景
Wnt通路参与基因表达、细胞行为、细胞粘附和细胞极性的控制。典型的(β-连环蛋白依赖的)Wnt信号通路是Wnt通路中研究得最好的,并且在进化过程中高度保守。在这个途径中,Wnt信号抑制β-连环蛋白的降解,β-连环蛋白可以调节许多基因的转录。Wnt信号通过连接Wnt蛋白到其各自的二聚体细胞表面受体激活
死亡受体信号通路研究背景
死亡受体是细胞表面受体,传递由特定配体启动的凋亡信号,并在指导性凋亡中发挥核心作用。死亡受体属于肿瘤坏死因子受体(TNFR)基因超家族。到目前为止,死亡受体家族的八个成员已被鉴定:TNFR1(也称为DR1、CD120a、p55和p60)、CD95(也称为DR2、APO-1和Fas)、DR3(也称为A
补体激活信号通路研究背景
补体系统是一种酶级联反应,是血液和细胞表面蛋白质的集合,有助于抗体清除生物体病原体的能力。补体系统由30种不同的蛋白质组成,包括血清蛋白、浆膜蛋白和细胞膜受体,是先天免疫系统的重要组成部分。一些补体蛋白与免疫球蛋白或细胞膜成分结合。另一些是酶原,当被激活时,会切割一个或多个其他补体蛋白,并启动进一步
自噬信号通路相关BCL2L2
这个基因编码bcl-2蛋白家族的一个成员。这个家族的蛋白质形成异二聚体或同二聚体,并作为抗和促凋亡的调节因子。在细胞毒性条件下,该基因在细胞中的表达有助于减少细胞凋亡。对小鼠相关基因的研究表明,ngf和bdnf依赖神经元的存活与此有关。小鼠基因的突变和敲除研究表明在成年精子发生中起着重要作用。选择性
自噬的信号通路图的组成部分
自噬的信号通路图可以分成2部分:巨自噬(Macroautophagy)和线粒体自噬(Mitophagy)。这2部分的又有重叠。
IL12信号通路研究背景
白细胞介素12(IL-12)家族具有唯一的异二聚体细胞因子,包括IL-12、IL-23、IL-27和IL-35。IL-12家族的异二聚体细胞因子由α链(p19、p28或p35)和β链(p40或Ebi3)组成。α链具有IL-12家族所属的IL-6超家族的四螺旋束结构特征。相反,β链与细胞因子(如IL-
IL10信号通路研究背景
白细胞介素-10(IL-10)是一种具有重要免疫调节功能的抗炎细胞因子。它是一种具有强大抗炎特性的细胞因子,通过激活的巨噬细胞抑制炎症细胞因子如TNF-α、IL-6和IL-1的表达。IL-10是一种具有重要免疫调节功能的多效性细胞因子。其作用影响免疫系统中许多细胞类型的活动。主要由抗原呈递细胞分泌,
P53信号通路研究背景
p53肿瘤抑制因子是主要的凋亡信号通路之一。p53蛋白是一种核转录因子,在基因毒性或细胞应激反应中调节与凋亡、生长停滞或衰老有关的多种基因的表达。p53蛋白水平受到E3泛素连接酶(包括MDM2)的负调控。E3连接酶促进p53泛素化和蛋白酶体依赖性降解。p53蛋白水平随着应激刺激而稳定,包括DNA损伤
IL1信号通路研究背景
许多癌症发生在感染和炎症部位。细胞衰老是一种永久性的细胞周期停滞状态,为肿瘤的发生提供了障碍,伴随着促炎细胞因子的升高,如IL1、IL6、IL8和TNFα。IL-1细胞因子家族由11个成员组成,在调节炎症中发挥重要作用。成员包括IL-1α、IL-1β、IL-1ra、IL-18、IL-33、IL-36
MapkErk信号通路研究背景
MAPK/ERK通路,也称为Ras-Raf-MEK-ERK通路,是细胞中的一条蛋白质链,将细胞表面受体的信号传递给细胞核中的DNA。该通路包括许多蛋白质,包括丝裂原活化蛋白激酶(MAPK,最初称为ERK),其通过向相邻蛋白质添加磷酸基团进行通信,磷酸基团充当“开”或“关”开关。MAPK是一个高度保守
JakStat信号通路研究背景
JAK-STAT信号通路传递来自调节生长、存活、分化和病原体抗性的细胞外化学信号的信息。JAK-STAT信号级联由三个主要组成部分组成:细胞表面受体、Janus激酶(JAK)和两个信号转导和转录激活蛋白(STAT)。JAK-STAT功能中断或失调可导致免疫缺陷综合征和癌症。细胞表面受体,通常是细胞因
IL17信号通路研究背景
IL-17家族由六个成员IL-17A-F组成,而IL-17受体家族由五个成员IL-17RA到IL-17RE组成。IL-17RA是一种常见的受体,与IL-17RB、IL-17RC和IL-17RE形成异二聚体复合物。到目前为止,所有的IL-17受体都招募Act1作为下游信号转导的衔接分子。IL-17A和
TGFbeta信号通路研究背景
TGF-β信号传导参与许多细胞(包括胶质瘤细胞)的增殖、分化和存活/或凋亡的调节。TGF-β通过特异性受体激活多种细胞内途径发挥作用,导致受体调节的Smad2/3蛋白磷酸化,这些蛋白与共同的介体Smad4相关。这种复合物易位到细胞核,与DNA结合并调节许多基因的转录。此外,TGFβ活化激酶-1(TA
NFKB信号通路研究背景
在该途径中,NF-κB/Rel蛋白被IκB蛋白结合和抑制。生长因子、促炎细胞因子、化疗、放疗和抗原受体激活IKK复合物,该复合物磷酸化IκB蛋白。IκB的磷酸化导致其泛素化和蛋白酶体降解,释放NFκB/Rel复合物。转录因子NF-κB由此释放并促进细胞因子、细胞粘附分子和抗凋亡蛋白的表达。免疫系统发
T细胞受体信号通路研究背景
T细胞受体(TCR)在T细胞的功能和免疫突触的形成中起着关键作用。它在T细胞和抗原呈递细胞(APC)之间提供连接。TCRs激活促进了一系列信号级联,最终通过调节细胞因子的产生、细胞存活、增殖和分化来决定细胞的命运。T淋巴细胞的激活是免疫系统有效反应的关键事件。TCR激活受各种共刺激受体调节。CD28
自噬激活Hippo通路
而最早关于Hippo通路与自噬关系的论文则是2014年发表于《JEM》的一篇论文。mTORC1信号是自噬途径主要的上游抑制通路,而在TSC1缺失的细胞中,mTORC1通路则维持组成型激活状态。该项研究的研究者发现,在TSC1缺失的细胞中,不仅自噬受到抑制, Hippo通路也受到显著抑制。机制研究发现
与自噬信号通路相关因子介绍KMT2A
该基因编码一个转录辅激活子,在早期发育和造血过程中起到调节基因表达的重要作用。编码蛋白包含多个保守功能域。其中一个域,即集合域,负责其组蛋白H3赖氨酸4(H3K4)甲基转移酶活性,介导与表观遗传转录激活相关的染色质修饰。这种蛋白由酶Taspase 1加工成两个片段,MLL-C和MLL-N。这些片段重