电子显微镜下首次成功创建电子—光子对

来自德国和瑞士的一个研究团队首次在电子显微镜中以可控方式成功创建了电子—光子对。他们发表在《科学》杂志上的新方法,可同时生成两个成对的粒子,且能够精确地检测到所涉及的粒子。该研究结果扩展了量子技术的工具箱。 世界各地的科学家都在尝试将基础研究的成果应用到量子技术中。为此,通常需要具有定制特性的单个粒子。 德国马克斯普朗克研究所(MPI)、哥廷根大学和瑞士洛桑联邦理工学院(EPFL)的国际团队成功地在电子显微镜中耦合单个自由电子和光子。在哥廷根大学的实验中,来自电子显微镜的光束穿过由瑞士团队制造的集成光学芯片。该芯片由一个光纤耦合器和一个环形谐振器组成,该谐振器通过将移动的光子保持在圆形路径上来存储光。 MPI科学家阿明·菲斯特解释说,当一个电子在最初的空谐振器上散射时,就会产生一个光子。在这个过程中,电子损失的能量正好是光子在谐振器中从无到有创造出来所需的能量。结果,这两个粒子通过它们的相互作用耦合成一对。通过改进测量......阅读全文

双光子显微镜和激光共聚焦显微镜的区别

荧光显微镜和激光共聚焦显微镜的区别激光共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及

双光子显微镜和激光共聚焦显微镜的区别

荧光显微镜和激光共聚焦显微镜的区别激光共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及

双光子显微镜和激光共聚焦显微镜的区别

荧光显微镜和激光共聚焦显微镜的区别激光共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。主要系统包括激光光源、自动显微镜、扫描模块(包括共聚焦光路通道和针孔、扫描镜、检测器)、数字信号处理器、计算机以及

多光子显微镜中的焦点深度扩展方法(二)

为了解决使用单个环扩展焦深光通量不够的问题, BINGYING CHEN等人利用超短脉冲相干长度短的特性,采用多环结构的分束掩模,超快激光脉冲经过时会被分束掩模分成不同的环形子束,每个子束都有时间延迟,也就是每个子束在不同的时间点在物镜的焦平面上形成贝塞尔焦点。如果每个环引入的时间延迟大大超过了激光

Thorlabs多光子显微镜基本套件及应用

MPM-2PKIT多光子基本套件是Thorlabs公司为想要自己搭建多光子成像系统的研究人员提供的解决方案,在量身定制的同时又不牺牲成像的性能。该套件包含一个模块化多光子成像系统所必须的核心部件,为特定应用而配置。此外,该系统无需传统显微镜,即可以对大样品,如整个活体生物等进行成像,并且该设计减小了

多光子显微镜中的焦点深度扩展方法(一)

双光子激光扫描显微镜结合钙指示剂是活体神经元信号探测的金标准。神经网络中的神经元分布在三维空间中,监测它们的活动动态需要一种能够快速提高体积成像速率的方式。但是,使用光栅扫描多光子显微镜对大量图像进行成像,如果采用高数值孔径(NA)的物镜来获得较高的横向分辨率时,会导致较小的聚焦深度,为了获得小聚焦

清华大学仪器共享平台双光子显微镜

仪器名称:双光子显微镜仪器编号:15017684产地:日本生产厂家:Olympus型号:FV1200MPE出厂日期:201403购置日期:201510所属单位:生命学院>蛋白质研究技术中心>细胞影像平台>设施细胞影像平台放置地点:清华大学生物医学馆U6-119固定电话:固定手机:固定email:联系

(双光子、共聚焦)荧光显微镜和普通显微镜的区别

  最近试着做了一些小鼠的冰冻切片,接下来要使用荧光显微镜看自己打的病毒是否在自己想要的脑区。荧光显微镜的一些基本原理需要简单学习一下,也在此分享一下。  荧光显微镜是利用紫外线为光源,用以照射被检验的物体,使该物体发出光源,然后在显微镜下进行对物体的观察。主要是用于免疫荧光细胞,主要是由光源、滤板

光子扫描隧道显微镜特点及适用范围

特点相对于扫描电镜,光子扫描隧道显微镜 还具有以下优点:1、可用 于不导电样品的观测2、要以进行表面三维立体成像3、更适用于光谱学等方面的应用4、图像由数字数据流组成,便于远距离观察、 储存及处理,采用电子显微镜观察时,必须对样品做特别 处理,因而会引进许多人为因素;由于不需要真空条件,使用成本和维

光子扫描隧道显微镜探针的研制和应用

    研究光子扫描隧道显微镜(PSTM)探针的研制和PSTM探针在distearyl3,3’-thiodipropionate自组装分子膜STM研究中的应用。PSTM探针是既能传输电子又能传输光子的多功能扫描探针。它能够应用到STM上通过传输电子获得和金属探针一样效果,又能应用到近场光学显微镜上获

关于空间站双光子显微镜的基本介绍

  空间站双光子显微镜的研制由北京大学国家生物医学成像科学中心主任程和平团队负责,基于一种双光子吸收及荧光激发的非线性光学成像技术,具有高分辨率、强三维层析能力、大成像深度等特点。  2022年,团队攻克了航天极端环境机体应激与防护等多项技术难题,最终研制出空间站双光子显微镜。  1、空间站双光子显

关于正置多焦点多光子显微镜的简介

  正置多焦点多光子显微镜是一种用于生物学领域的分析仪器,于2016年05月27日启用。  正置多焦点多光子显微镜的技术指标:  多种激光器灵活选择:405 nm、445 nm、488 nm、515 nm、561 nm、638 nm,输出功率可调;检测模块“标准”:ICX 285 感光元件(CCD)

多光子共聚焦扫描显微镜的原理以及应用

多光子共聚焦显微镜是光学显微镜的重大改进,主要表现为可以观察活细胞、固定细胞和组织的深层结构,并且可以得到清晰锐利的多层Z平面结构,即光学切片,并以此可以构建标本的三维实体结构。共聚焦显微镜采用激光光源,经过扩充后充满整个物镜后焦平面,然后经过物镜的透镜系统,在标本的焦平面上会聚成非常小的点。根据物

光子扫描隧道显微镜的构造及作用机理

PSTM系统  由PSTM工作头 、相应的图像处理系统及防振工作台三部分组成。工作头包括可调置坡镜、光纤探头、机械操作架;图像采集及处理系统包括一台计算机,彩色打印机及一台高精度的监示器,由这套系统可进行多种样品图像的采集及处理,具体见图1。光子扫描隧道显微镜作用机理光子扫描隧道显微镜的基本思想是,

双光子荧光显微镜的技术特点和使用技巧

双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。

LaVision双光子显微镜肿瘤生长与入侵动态成像(三)

Fig 4. HT-1080双色细胞的原位入侵模型。a 注射后6天入侵类型的分类。缺少入侵(上,左)并且散布单个细胞(上,右;白色箭头),散射的或者紧密地丝状整体入侵(下图)。标尺250um。 b 45个连续的非依赖性肿瘤的按中所分入侵模式的频率。11天时,沿着纹状肌肉纤维集体入侵丝的定位。

LaVision双光子显微镜肿瘤生长与入侵动态成像(一)

Dynamic imaging of cancer growth and invasion: a modiWedskin-fold chamber modelStephanie Alexander · Gudrun E. Koehl ·Markus Hirschberg · Edward K. Ge

双光子显微镜展示学习涉及大脑的不同区域

  为了探索大脑中学习和记忆的建立方式,约翰·霍普金斯大学医学院的科学家使用了激光辅助成像工具来监测和测量AMPAR分子的水平,从而有助于在老鼠大脑中的神经元之间发送信息。他们的实验增加了证据,即基于运动的学习可以发生在大脑的多个区域,即使是通常与运动控制无关的区域。科学家将带有荧光标签的编码DNA

双光子荧光显微镜的技术特点和使用技巧

  双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。  双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双

Lavision双光子显微镜毛囊再生过程活体成像(一)

Live imaging of stem cell and progeny behaviour in physiological hair-follicle regenerationPanteleimon Rompolas1, Elizabeth R. Deschene1*, Giovanni

微型化双光子显微镜研制十年路

  今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美

LaVision双光子显微镜肿瘤生长与入侵动态成像(二)

Fig 2. 肿瘤生长阶段。 a 由落射荧光显微镜监测的移植瘤生长和入侵的时间进程。新生血管的插入,不存在(3天)和存在(7天)。标尺1mm。b 通过以day 1的体积进行归一化的肿瘤体积。mean+-SD(n=9)。c HT-1080移植肿瘤在6天的时候的肿瘤形态,血管化,分生和凋亡。

三光子显微镜揭示清醒小鼠脑中全部皮质层

  美国麻省理工学院(MIT)的Picower研究所开发的新型三光子显微镜能够提供高速、低功率的超短光脉冲,能够到达大脑内的深层目标,而不会造成功能性干扰或物理损伤。它能够高效地检测由细胞发出的荧光,并产生具有清晰分辨率和快速帧速率的图像。三光子显微镜使科学家们能够更深入地观察大脑,因为较低能量、较

双光子荧光显微镜的技术特点和使用技巧

  双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。   双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是

Lavision双光子显微镜毛囊再生过程活体成像(二)

Figure 2 |生长过程中处于形态重组的干细胞progeny隔层. a, 毛囊生长中的向下伸展。生长状态的活毛囊三个连续时间点(3小时间隔)的光学切片,展示了progeny组分向下的伸展(左三) 。核间距增加,干细胞和progen隔层(大约生长初期 II to IIIa)中的总细胞数被定

光子被光子散射证据首次找到

  据物理学家组织网16日报道,欧洲核子中心(CERN)的ATLAS探测器中,发现了高能量下光子被光子散射的首个直接证据。这一过程极为罕见,两个光子相互作用并改变了方向,这证实了量子电动力学的最早预测之一。  ATLAS探测器项目物理协调员丹·托沃里说:“这是里程碑式的成果,是光在高能量下自身相互作

质子对撞中首次观察到光子变陶子

据欧洲核子研究中心(CERN)官网25日报道,该机构大型强子对撞机(LHC)上的紧凑缪子线圈(CMS)国际合作组宣布,他们利用CMS轨迹探测器出色的追踪能力,首次观察到质子对撞中两个光子“变身”为两个陶子(τ)。上世纪70年代,陶子首次在美国斯坦福加速器实验室现身,但其寿命极短,对其开展精确研究相当

质子对撞中首次观察到光子变陶子

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519895.shtm

显微镜对光怎么对

对光 步骤:1.转动转换器,使低倍物镜对准通光孔(物镜的前端与载物台要保持2厘 米的距离)。2.把一个较大的光圈对准通光孔。左眼注视目镜内(右眼睁开,同时画图)。转动反光镜,使光线通过通光孔反射到镜筒内。通过目镜,可以看到白亮的视野。使用显微镜的全部步骤是:一、安放1.右手握住镜臂,左手托住镜座。2

微型化三光子显微镜研制成功

 北京大学程和平、王爱民研究团队日前于《自然-方法》在线发表研究论文。文章报道了一款重量仅为2.17克的微型化三光子显微镜,能直接透过大脑皮层和胼胝体,首次实现对自由行为小鼠的大脑全皮层和海马神经元功能成像,为揭示大脑深部结构中的神经机制开启了新的研究范式。  “事实上,解析脑连接图谱和功能动态图谱