我国科学家在极化激元领域取得新进展

如何在微观世界里更好地操控光,让通信、成像等技术实现新飞跃?我国一支科研团队通过国际合作,在极化激元领域取得最新进展,有望实现纳米尺度上光的精确操控并提升纳米级光电互联和光学传感等应用水平。研究成果18日由国际学术期刊《自然·纳米技术》在线发表。 极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式,也可以认为是一种光子与物质耦合形成的准粒子。它具有优异的光场压缩能力,可以轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。 论文通讯作者之一、国家纳米科学中心研究员戴庆介绍,研究团队巧妙设计石墨烯/α相氧化钼异质结并结合独特的化学掺杂手段,首次在实验上证明了杂化极化激元的等频轮廓发生拓扑转变,不仅使其传播方向突破了原有晶向的限制,还能够将能量高效汇聚进行定向低损传输。 “通俗来讲,我们的研究工作就是把10微米的红外光压缩到千分之一再做调控,还要传得远、调得动。”戴庆说,“打个比方,不仅要把大象装进粉笔盒,......阅读全文

最小等离激元体系量子器件研制成功

  近日,南京大学固体微结构物理国家重点实验室李涛教授、祝世宁院士研究组报告研制出迄今为止尺寸最小(14×14μm2)的光量子控制—非门,该成果近期发表在《自然—通讯》。  据悉,该量子逻辑门也是国际上首个基于等离激元体系的具有光量子信息处理功能的量子器件,能进行二比特量子操作,可作为光量子集成芯片

中科大团队设计等离激元催化新材料

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/495458.shtm 本报合肥3月6日电(记者马荣瑞 通讯员王敏)中国科学技术大学教授熊宇杰、龙冉研究团队设计了一类等离激元催化材料,发现其独特的界面耦合态直接电子激发机制,实现了可见光区和红外光区二

光学调控等离子激元激子相互作用研究获进展

近日,华南师范大学信息光电子科技学院教授兰胜课题组在光学调控介电-金属复合纳米腔与单层二维材料强耦合的研究中取得重要进展。相关研究发表于ACS Nano。博士生刘诗媚和硕士毕业生邓富(现为香港科技大学博士生)为该论文共同第一作者,兰胜教授为通讯作者,华南师范大学为第一完成单位。等离子激元-激子的强耦

德研发出世界首个表面等离激元电路

  如何在纳米尺寸的集成芯片上实现像操纵电子一样来操控光子是光电子技术未来发展的关键。德国维尔茨堡大学的物理学家近日成功研发出世界首个表面等离激元电路,在可能取代“集成电路”的新一代信息技术领域取得进展。   在计算机技术领域,多年前就不再提高经典处理器的时钟频率,增加计算能力只能通过应用多个处理

贵金属纳米结构表面等离激元研究获系列进展

  近期,中国科学院合肥物质科学研究院固体物理研究所副研究员张俊喜与中国科学技术大学光学与光学工程系、英国Aston大学光子技术研究所(AIPT)、澳大利亚国立大学非线性物理中心等单位科研人员合作,在贵金属纳米结构表面等离激元研究中取得系列进展。  实现光与物质之间强的相互作用在设计光子器件上有重要

上海微系统所在半金属极化子研究中取得进展

原文地址:http://www.cas.cn/syky/202103/t20210318_4781439.shtml  上世纪60年代,有学者从理论上预测了固体材料中一种新的复合粒子,由空穴与等离激元的强耦合而产生的等离激元极化子,为凝聚态领域的复杂多体理论拓展了一个重要的研究分支。但是,普通金属中

邓少芝团队获中国电子学会自然科学奖一等奖

近日,中国电子学会公布2023年中国电子学会科学技术奖名单,中山大学电子与信息工程学院(微电子学院)教授邓少芝团队完成的项目“基于纳米材料的太赫兹波探测与产生新原理新器件”荣获自然科学奖一等奖。现代信息社会大量使用电磁波产生和探测技术。新兴技术发展,如6G通信、高分辨雷达、无人驾驶等,急需太赫兹波(

我国科学家突破片上纳米尺度光操控难题

  我国科学家在纳米尺度光操控领域取得重要进展。记者10日获悉,来自上海交通大学、国家纳米科学中心等单位的科研人员,成功实现芯片上纳米光信号的高效激发与路径分离,为开发更小、更快、能耗更低的下一代光子芯片奠定了坚实基础。相关研究成果发表于《自然·光子学》杂志。  随着芯片尺寸不断缩小、能耗要求持续降

电极的极化

在银-硝酸银电极体系中,在平衡状态时,溶液中的银离子不断进入金属相,金属相中的银离子不断进入溶液,两个过程速度相同,方向相反。此时电极电位等于电极体系的平衡电位。通常把金属溶解过程叫阴极过程,如Ag→Ag++e。阳离子由溶液析出在金属电极上的过程叫阴极过程。如Ag++e→Ag。当电极上有电流通过时,

Cell-Rep:细胞自主性调节皮层神经元极化的新机理

神经元(神经细胞)是神经系统的基本结构和功能单元。它们通常具有多根短而粗的树突以及一根长而细的轴突分别用于接收和输出生物信号。因此,神经元不论在形态还是功能上都是高度极性化的。神经元发育异常会导致精神或运动性疾病。树突-轴突极性的建立过程被称为神经元的极化。在小鼠胚胎大脑皮层发育的中晚期阶段,绝大多

“90后”追光者:挑战光学极限

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/507370.shtm 论文被 Science接收了。收到通知的那一刻,郭相东知道自己3年前的那个决定做对了。 当时,他放弃来自互联网头部企业的高薪offer,转而申请中国科学院特别研究助理

中国科学院“90后”挑战光学极限

原文地址:http://news.sciencenet.cn/htmlnews/2023/8/507308.shtm 论文被Science接收了。收到通知的那一刻,郭相东知道自己3年前的那个决定做对了。 当时,他放弃来自互联网头部企业的高薪offer,转而申请中国科学院特别研究助理项目,

新方法成功将超透镜成像分辨率提高一个量级

利用极化激元材料和超构材料构筑的超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测,对物理芯片、化学材料和生命科学等领域产生广泛而革命性的影响。2000年,英国帝国理工学院John Pendry爵士首次提出了超透镜的概念,并预测其具有突破传统光学成像分辨率极限的能力

横电极化波与二维材料双激子强耦合的研究获进展

在国家自然科学基金的支持下,华南师范大学信息光电子科技学院兰胜教授课题组在横电极化波与二维材料双激子强耦合的研究中取得重要进展。相关研究成果近日发表于Laser & Photonics Reviews。博士生李树磊和周丽丹为该论文共同第一作者,兰胜教授为通讯作者,华南师范大学为第一完成单位。光与物质

长春光机所在表面等离激元模式耦合研究中取得进展

  近日,中国科学院长春光学精密机械与物理研究所光学技术中心光学与功能薄膜研究组,基于等离激元杂化模式,提出了一种在保证低欧姆损耗的同时,能对光场产生强烈束缚作用的复合光栅纳米结构。研究成果发表在Advanced Optical Materials上。该工作获得了国家自然科学基金重点项目和面上项目的

长春光机所在表面等离激元模式耦合研究中获得进展

  近日,中科院长春光学精密机械与物理研究所光学技术中心先进光学薄膜与功能薄膜技术研究组基于等离激元杂化模式,提出了一种在保证低欧姆损耗的同时,能对光场产生强烈束缚作用的复合光栅纳米结构。相关研究成果发表在国际期刊《先进光学材料》(Advanced Optical Materials, DOI: 1

20点直播|厦大田中群院士分享等离激元光子学

2021年10月29日晚 8:00(北京时间),大家期待已久的 iCANX Talks第75期即将重磅来袭,本期直播我们有幸邀请到厦门大学的田中群教授来到iCANX Talks讲座系列,敬请期待!    The highly expected iCANX Talks Vol.75 will be

20点直播|厦大田中群院士分享等离激元光子学

2021年10月29日晚 8:00(北京时间),大家期待已久的 iCANX Talks第75期即将重磅来袭,本期直播我们有幸邀请到厦门大学的田中群教授来到iCANX Talks讲座系列,敬请期待!    The highly expected iCANX Talks Vol.75 will be

大连化物所纳米热电材料等离激元性质研究取得新进展

  近日,中国科学院大连化学物理研究所研究员姜鹏、中科院院士包信和团队与副研究员周传耀、中科院院士杨学明团队,以及大连理工大学教授曹暾合作,在纳米热电材料的等离激元研究中取得新进展,相关成果发表在《纳米快报》(Nano Letters)上。  Bi2Te3是研究最为广泛的热电材料之一,因其具有奇异的

超高分辨散射式近场光学显微镜在超快研究领域应用进展

近年来,范德瓦尔斯(vdW)材料中的表面极化激元(SP)研究,例如等离极化激元、声子极化激元、激子极化激元以及其他形式极化激元等,受到了广大科研工作者的关注,成为了低维材料领域纳米光学研究的热点。其中,范德瓦尔斯原子层状晶体存在独特的激子极化激元,可诱导可见光到太赫兹广阔电磁频谱范围内的光学波导。同

科学家将太赫兹波加速电子能量提升近一个量级

原文地址:http://news.sciencenet.cn/htmlnews/2023/7/504934.shtm7月13日,《自然-光子学》发表中国科学院院士、(以下简称上海光机所)研究员李儒新团队在太赫兹波电子加速领域取得的重要进展。该团队基于上海光机所新一代超强超短脉冲激光综合实验装置,利用

阳极极化仪参数

  阳极极化仪参数:   ◆输出电位测量范围: -1999mV~+1999mV。   ◆电位测量误差: ≤1%,加减末位1个字 ≤1%,加减末位1个字 。   ◆电流测量误差: ≤1%,加减末位1个字 ≤1%,加减末位1个字 。   ◆输出槽压:±10V ±15V 。   ◆输入阻抗:≥1

什么是极化电压

  极化电压:  极化电压的大小会直接影响检测器的灵敏度。当极化电压较低时,离子化信号随所采用的极化电压的增加迅速增大。  1. polarizing voltage  当电压超过一定值时,增加电压对离子化电流增加没有大的影响。正常操作时,所用极化电压一般为150一300V。  2. 电力专业名词 

什么是电极极化

[电极极化]electrodepolarization;电子导体与围岩中溶液或熔盐接触时,会形成电偶层,产生电位跳跃,这个电位跳跃便称为电子导体与溶液接触时的电极电位。当有外电场作用时,相对平衡的电极电位数值将发生变化。通常把在—定电流密度作用下的电极电位与相对平衡的电极电位的差值,称为电极极化。常

细胞迁移的极化

当细胞胞膜上的受体接触到周围环境里面的迁移信号分子之后,细胞内部与细胞迁移有关的物质会重新分布,细胞显出“前”和“后”两端,为迁移做准备。物质如β机动蛋白的mRNA,Arp2/3复合体还有一些化学感受器,会呈现出前多后少的分布状况,与之相反的是Ca2+。虽然两种物质有着不同的分布趋势,但是它们的目的

什么是极化电压

一个电池电极,当没有电流流过时,静止的、相对理想化的状态时的电极电位,称为平衡电极电位。当电极有电流流过时,电极的静止状态被打破,实际电极电位偏离了平衡电极电位,这种现象称为极化。所以可以这样定义:当电池有电流通过,使电极偏离。

我国解析水波如何单向传播

海洋是人类活动重要场所,如果能灵活控制水波传播方向,减少海浪对相关设备的侵袭,将极大便利人类活动,对海洋环境保护也有积极意义。近日,厦门大学陈焕阳教授课题组借鉴人工表面等离激元的理论方法,在水波局域现象研究取得重要突破,提出水波极化激元新概念,并通过设计的超材料结构实现水波的单向传播。近日,国际期刊

中国科大实现迄今最高可见度的表面等离子激元量子干涉

  中国科学技术大学郭光灿院士领导的量子信息实验室任希锋研究组近日在量子集成芯片上实现了单个表面等离子激元的量子干涉,其干涉可见度达到95.7%,这是迄今公开报道的国际最高水平,该成果以长文(Article)形式于7月14日发表在 Phys. Rev. Applied 上。  集成光学芯片近年来越来

北大学者研发出新型激光增强表面等离激元探测技术

  记者从北京大学获悉,该校马仁敏研究员和戴伦教授合作,实现了一种新型激光增强表面等离激元探测技术。  这种新型探测技术的强度探测品质因子比传统的表面等离激元(SPR)探测器高400倍左右。同时成本低,尺寸仅为微米量级,在一根头发丝的端面上即可制备数以千计的探测器。  “该探测器所具有的极高灵敏度、

表面等离激元光栅在高灵敏红外探测器中的应用

  自1800年William Herschel发现红外辐射后,红外探测逐渐成为现代光电技术领域的重要分支。以诺贝尔物理学奖获得者Wilhelm Wien, Max Planck等人为代表的科学家们建立了远场范畴的红外物理学基础(图1)。基于人们对远场红外物理学的科学认识,红外探测技术的发展经过了漫