什么叫酰胺键?和肽键有什么区别
其实肽键的别名就叫酰胺键。酰胺键是一种带负电性的官能团。在有机化学中,酰胺键是-CO-NH-,其中碳氧成双键,氮氢成单键。酰胺键肽键的区别有:1、范围不一样:肽键都是酰胺键,酰胺键包括肽键但不等同于肽键,酰胺键所指的范围比肽键的大。2、在生物化学中,酰胺键就是指肽键,由一分子氨基酸的氨基与另一分子氨基酸的羧基脱水缩合而来。但是形成肽键至少要2个及以上的氨基酸,只有二肽及多肽里面的酰胺键才叫做肽键。......阅读全文
聚酰胺色谱法分离黄酮类化合物的原理是什么
1)吸附原理:一般认为是通过分子中的酰胺羰基与酚类、黄酮类化学物的酚羟基,或酰胺键上的游离胺基与醌类、脂肪羧酸形成氢键缔合而产生吸附。2)吸附强弱的规律① 形成氢键的基团数目越多,则吸附能力越强。②成键位置对吸附力也有影响。形成分子内氢键者,其在聚酰胺上的吸附即相应减弱。③分子中芳香化程度高者,则吸
生物素概述
作为一些酶的辅基而起辅因子作用。它以共价键的形式通过酰胺键和脱辅基酶蛋白的一个专一赖氨酰残基的ε- 氨基相连。ε-N-生物素酰-L-赖氨酸称为生物胞素(biocytin) (图4[生物素作为辅基的形式])。 需要生物素的酶类能催化二氧化碳的参入 (羧化作用)或转移,因而生物素和二氧化碳的固定密
我国科学家首次研制出尼龙固态电解质
尼龙是一种具有80多年历史的经典聚合物。其独特的酰胺键(肽键)使其具有很高的弹性,丰富的氢键网络结构也使其具有一定的机械强度。尼龙在生活中最为人所知的应用当属被年轻女性所钟爱的尼龙丝袜。 近日,尼龙固态电解质在中国科学院青岛生物能源与过程研究所首次研制成功。4月2日,该所崔光磊研究员团队的这
关于组氨酸脱羧酶的基本介绍
组氨酸脱羧酶( histidine decarboxylase )是氨基酸脱羧酶的一种,催化组氨酸脱羧生成组胺反应的酶。 EC.4.1.1.22,肠内细菌和乳酸杆菌(Lactobacillus)等都含有这酶,在动物组织中,肾脏和肝脏发现较多,但胰脏中比较少。并认为这种酶也分布在某种高等植物中,
中科院研究团队成功解析β咔啉生物碱合成机制
记者日前从中科院南海海洋所获悉,该所鞠建华团队成功解析了深海微生物来源的β-咔啉生物碱的生物合成机制。相关成果近日发表在《应用化学》杂志上。随后,Faculty of 1000对该成果进行了推荐。 据介绍,研究人员从一株南海深海放线菌中分离得到5个海洋β-咔啉生物碱类化合物(
关于碱性蛋白酶的基本介绍
碱性蛋白酶,指在碱性条件下能够水解蛋白质肽键的酶,最适pH在9~11范围内。广泛应用于洗涤剂、食品、医疗、酿造、丝绸、制革等行业。 碱性蛋白酶,又称丝氨酸蛋白酶。常见的有两种,一为Novo蛋白酶,另一为Carsberg蛋白酶,两者的性质和构造相近,分别含275和274个氨基酸残基,由一条多肽链
碱性蛋白酶的简介
碱性蛋白酶,指在碱性条件下能够水解蛋白质肽键的酶,最适pH在9~11范围内。广泛应用于洗涤剂、食品、医疗、酿造、丝绸、制革等行业。 碱性 蛋白酶,又称 丝氨酸蛋白酶。常见的有两种,一为Novo蛋白酶,另一为Carsberg蛋白酶,两者的性质和构造相近,分别含275和274个 氨基酸残基,由一条
糖苷在聚酰胺色谱上的洗脱顺序为什么是三糖苷最大
1)吸附原理:一般认为是通过分子中的酰胺羰基与酚类、黄酮类化学物的酚羟基,或酰胺键上的游离胺基与醌类、脂肪羧酸形成氢键缔合而产生吸附.2)吸附强弱的规律① 形成氢键的基团数目越多,则吸附能力越强.②成键位置对吸附力也有影响.形成分子内氢键者,其在聚酰胺上的吸附即相应减弱.③分子中芳香化程度高者,则吸
消除抗生素污染新方法,速率更高、产物更安全!
抗生素在环境中残留会给人类健康带来危害,而在许多抗生素中,包括青霉素、阿莫西林、头孢氨苄等在内的β-内酰胺类抗生素用量占比约为70%。围绕水中β-内酰胺类抗生素的降解难题,近日,中国科学院化学研究所研究员马万红及合作者发现一种新型光催化体系,能够高效、高选择性地分解β-内酰胺类抗生素分子,并完全
谷胱苷肽的基本信息介绍
谷胱甘肽(glutathione,r-glutamyl cysteingl +glycine,GSH)是一种含γ-酰胺键和巯基的三肽,由谷氨酸、半胱氨酸及甘氨酸组成,存在于几乎身体的每一个细胞 。 谷胱甘肽能帮助保持正常的免疫系统功能,并具有抗氧化作用、整合解毒作用。半胱氨酸上的巯基为其活性基
谷胱甘肽的基本内容介绍
谷胱甘肽(glutathione,r-glutamyl cysteingl +glycine,GSH)是一种含γ-酰胺键和巯基的三肽,由谷氨酸、半胱氨酸及甘氨酸组成,存在于几乎身体的每一个细胞。 谷胱甘肽能帮助保持正常的免疫系统功能,并具有抗氧化作用、整合解毒作用。半胱氨酸上的巯基为其活性基团
关于谷胱甘肽的基本信息介绍
谷胱甘肽(glutathione,r-glutamyl cysteingl +glycine,GSH)是一种含γ-酰胺键和巯基的三肽,由谷氨酸、半胱氨酸及甘氨酸组成,存在于几乎身体的每一个细胞 [1]。 谷胱甘肽能帮助保持正常的免疫系统功能,并具有抗氧化作用、整合解毒作用 [1]。半胱氨酸上的
消除水中抗生素污染有了新方法
环境中残留的抗生素及其引起的耐药基因传播给人类健康带来了危害。在众多种类抗生素中,包括青霉素、阿莫西林、头孢氨苄等在内的β-内酰胺类抗生素用量占比约为70%。 围绕水中β-内酰胺类抗生素的降解难题,近日,中国科学院化学研究所(以下简称化学所)光化学院重点实验室研究员马万红及北京工商大学的合作者
Matter:循环稳定催化剂实现端炔与二氧化碳的高效羧化
近日,国家纳米科学中心研究员唐智勇课题组在温和条件下催化制备不饱和羧酸研究中获得进展,通过构筑酰胺键功能化的氧化石墨烯/银复合催化剂实现端炔类化合物与二氧化碳反应高效生成羧酸,设计的催化剂表现出循环稳定性。相关研究成果发表在Matter上。 端炔与CO2的羧基化反应可以解决二氧化碳排放的问题,
简述糖鞘脂的结构
鞘脂类鞘脂类分子由 3个基本结构成份组成:一是鞘氨醇,是长链的带有氨基的二醇,链长约18碳原子左右;二是长链脂肪酸,链长约18~26碳原子,以酰胺键与鞘氨醇相结合,称为神经酰胺;三是极性基团的头部,通常联接在鞘氨醇第一个碳原子的羟基上。因极性基团不同,形成不同类型的鞘脂,如:含有磷酸的称为鞘磷脂
糖鞘脂的结构简介
鞘脂类鞘脂类分子由 3个基本结构成份组成:一是鞘氨醇,是长链的带有氨基的二醇,链长约18碳原子左右;二是长链脂肪酸,链长约18~26碳原子,以酰胺键与鞘氨醇相结合,称为神经酰胺;三是极性基团的头部,通常联接在鞘氨醇第一个碳原子的羟基上。因极性基团不同,形成不同类型的鞘脂,如:含有磷酸的称为鞘磷脂
糖鞘脂的结构
鞘脂类鞘脂类分子由 3个基本结构成份组成:一是鞘氨醇,是长链的带有氨基的二醇,链长约18碳原子左右;二是长链脂肪酸,链长约18~26碳原子,以酰胺键与鞘氨醇相结合,称为神经酰胺;三是极性基团的头部,通常联接在鞘氨醇第一个碳原子的羟基上。因极性基团不同,形成不同类型的鞘脂,如:含有磷酸的称为鞘磷脂,含
鞘脂类鞘脂类分子的基本结构成份介绍
鞘脂类鞘脂类分子由 3个基本结构成份组成:一是鞘氨醇,是长链的带有氨基的二醇,链长约18碳原子左右;二是长链脂肪酸,链长约18~26碳原子,以酰胺键与鞘氨醇相结合,称为神经酰胺;三是极性基团的头部,通常联接在鞘氨醇第一个碳原子的羟基上。因极性基团不同,形成不同类型的鞘脂,如:含有磷酸的称为鞘磷脂,含
多肽合成的研究及应用现状(一)
多肽合成的研究及应用现状 多肽是一种与生物体内各种细胞功能都相关的生物活性物质,它的分子结构介于氨基酸和蛋白质之间,是由多种氨基酸按照一定的排列顺序通过肽键结合而成的化合物。到现在,人们已在人体中发现和分离出一百多种肽类,关于多肽的研究与应用,也取得了巨大的进步,引发了空前的研究热潮。多肽的全合成不
多肽合成仪概述(一)
多肽合成的研究及应用现状多肽是一种与生物体内各种细胞功能都相关的生物活性物质,它的分子结构介于氨基酸和蛋白质之间,是由多种氨基酸按照一定的排列顺序通过肽键结合而成的化合物。到现在,人们已在人体中发现和分离出一百多种肽类,关于多肽的研究与应用,也取得了巨大的进步,引发了空前的研究热潮。多肽的全合成不仅
羟基和酸形成的键
羧基功能化PEG可以用来修饰蛋白,抗体,多肽等。羧基可以和氨基反应形成稳定的酰胺键,也可以和羟基形成酯键。羧基化PEG在生物工程领域有着显著的应用,粒子表面改性,生物分子聚乙二醇化等。硫辛酸作为辅酶,在两个关键性的氧化脱羧反应中起作用,即在丙酮酸脱氢酶复合体和α-酮戊二酸脱氢酶复合体中,催化酰基的产
膜蛋白界面振动能量转移研究取得进展
中国科学技术大学合肥微尺度物质科学国家实验室、量子创新研究院、化学物理系罗毅教授研究团队研究员叶树集小组在膜蛋白界面振动能量转移方面取得进展。该小组揭示了生物膜界面蛋白质酰胺键骨架振动的能量转移速率与途径,研究成果以Ultrafast Vibrational Dynamics of Membra
学者开发出基于氟磺酸的可富集化学交联剂
近日,中国科学院广州生物医药与健康研究院研究员唐士兵与浙江大学研究员杨兵、北京航空航天大学副教授刘超团队合作,在国家自然科学基金、国家重点研发计划等项目的支持下,开发出一种新型氟磺酸类可富集化学交联的非天然氨基酸并在活细胞中研究蛋白质直接相互作用。相关成果发表于《自然-通讯》。蛋白质-蛋白质相互作用
学者开发出基于氟磺酸的可富集化学交联剂
近日,中国科学院广州生物医药与健康研究院研究员唐士兵与浙江大学研究员杨兵、北京航空航天大学副教授刘超团队合作,在国家自然科学基金、国家重点研发计划等项目的支持下,开发出一种新型氟磺酸类可富集化学交联的非天然氨基酸并在活细胞中研究蛋白质直接相互作用。相关成果发表于《自然-通讯》。 蛋白质-蛋白质
基因工程抗体的制备
抗体Fc段用双功能连接剂与荧光素,同位素,酶,发光化合物,稀土元素以及药物,毒素等连接后,并不影响其Fab功能区与特异性抗原结合。根据交联物的性质不同,标记的抗体可用作诊断试剂,也可作为药物的定向载体,引导药物或毒素到达抗原存在部位使药物或使毒素发挥更有效的作用,即俗称“生物导弹”。从而减少药物
生物活性物质蛋白质的简介
蛋白质是由许多α氨基酸按照一定的序列通过酰胺键 (或肽键)缩合而成的,具有较稳定的构象并具有一定生物功能的生物大分子。蛋白质是生命的载体,任何有生命的机体都不可能离开蛋白质。蛋白质在生命活动和种族繁衍中有重要的生物学意义,承担着强大的功能。 ① 结构功能:蛋白质是生物组织和细胞的组成成分,并发
基因工程抗体的制备
抗体的化学修饰: 抗体Fc段用双功能连接剂与荧光素,同位素,酶,发光化合物,稀土元素以及药物,毒素等连接后,并不影响其Fab功能区与特异性抗原结合。根据交联物的性质不同,标记的抗体可用作诊断试剂,也可作为药物的定向载体,引导药物或毒素到达抗原存在部位使药物或使毒素发挥更有效的作用,即俗称“生物
蛋白质的生物意义和功能
蛋白质是由许多α氨基酸按照一定的序列通过酰胺键 (或肽键)缩合而成的,具有较稳定的构象并具有一定生物功能的生物大分子。蛋白质是生命的载体,任何有生命的机体都不可能离开蛋白质。蛋白质在生命活动和种族繁衍中有重要的生物学意义,承担着强大的功能。 ① 结构功能:蛋白质是生物组织和细胞的组成成分,并发挥着保
概述二环己基碳二亚胺的用途
用于阿米卡星及氨基酸的合成脱水,是一种很好的低温生化脱水剂,也用于酸、酐、醛、酮等的合成。在日本,用于谷胱甘肽的脱水剂,占总消费的90%。该品作为脱水缩合剂时,可在常温下经短时间反应即成,反应后产物为二环己基脲。由于该产物在有机溶剂中溶解度很小,所以反应产物易于分离;同时,由于该品很难溶于水,因
二环己基碳二亚胺的主要用途
用于阿米卡星及氨基酸的合成脱水,是一种很好的低温生化脱水剂,也用于酸、酐、醛、酮等的合成。在日本,用于谷胱甘肽的脱水剂,占总消费的90%。该品作为脱水缩合剂时,可在常温下经短时间反应即成,反应后产物为二环己基脲。由于该产物在有机溶剂中溶解度很小,所以反应产物易于分离;同时,由于该品很难溶于水,因此即