植物蛋白质的亚细胞定位研究进展

摘要:细胞是生命形式的基本组成单元,各种蛋白质按照其功能有序地分布在细胞的每个分区中。植物细胞的主要分区包括细胞膜和其他内膜系统、细胞核、细胞质以及位于其中的线粒体、叶绿体、高尔基体和内质网等各种细胞器。植物蛋白质的亚细胞定位是功能基因组学的重要内容。主要的植物蛋白质亚细胞定位技术包括:融合报告基因定位法、免疫组织化学定位法、蛋白质组学定位技术以及共分离标记酶辅助定位法,而生物信息学预测也成为亚细胞定位研究的一种重要手段。高通量蛋白质亚细胞定位技术的发展和应用,为构建定位数据库积累了数据。在模式植物拟南芥中,有亚细胞定位信息的蛋白质已经超过4 000 个。点击这里进入下载页面:进入下载页面......阅读全文

单细胞蛋白质组学:让细胞个体研究更加精细

    细胞是生命活动的基本单元。对细胞的精确认知是理解细胞在生理和病理过程中功能的先决条件。    在组织、器官或个体中,细胞具有非常大的异质性,而传统的研究手段针对大量细胞进行分析,得到的是大量细胞的平均结果,无法区分不同细胞个体对于大量样品结果的具体贡献值,从而忽视或掩盖了单细胞的个体差异,不

怎么亚细胞定位分析

用报告基因技术呀 比如说最常用的绿色荧光蛋白GFP或者改造过的EGFP等。和目的基因构建成为融合蛋白,转入细胞中以后,用激光扫描共聚焦显微镜就可以观察到基因的亚细胞定位

定量蛋白质组学揭开巨噬细胞活化的秘密

巨噬细胞活化是许多疾病发展过程中的关键步骤,包括动脉疾病。最近,布莱根妇女医院和哈佛医学院的研究人员通过蛋白质组学及其他分析,强调了PARP9和PARP14在调节巨噬细胞活化中的作用。这项成果发表在《Nature Communications》上。布莱根妇女医院的Masanori Aikawa及其同

我国在单细胞蛋白质组学研究获突破

  浙江大学化学系微分析系统研究所方群教授团队,联合北京大学医学部精准医疗多组学研究中心主任黄超兰教授团队,在单细胞蛋白质组学分析研究领域取得突破性进展。研究论文近日在线发表在美国《分析化学》杂志上。  黄超兰介绍,近年来,基于细胞群体内的蛋白质组学研究,已越来越难以满足对生命功能深入探究的需要。从

蛋白质组与蛋白质组学简介2

3 甲基化干扰实验用来检测蛋白质的结合位点。甲基化修饰的DNA探针可以干扰蛋白质的结合。结合位点上未被修饰的DNA片段才能与蛋白结合,然后将DNA从被修饰的碱基处切割,电泳分离,结合蛋白的DNA在结合位点上不能被修饰,不能切断,可确定结合位点的位置。 4 Dnase I 足纹分析 蛋白

蛋白质组与蛋白质组学简介1

一、蛋白质组概念:一个细胞、一个组织或一个机体全部基因所表达的全部蛋白质。 二、蛋白质组学研究范畴 1.蛋白质和蛋白质间 2.蛋白质和核酸之间 3.蛋白质及其组成质点的分离、分析、鉴定 4.蛋白质结构分析 5.生理、病理或不同发育状态下蛋白质组表

Science:首次揭示蛋白组亚细胞结构定位地图

  对于人细胞中的蛋白是如何在细胞中定位的首次分析于5月11日在线发表在Science上,这项研究,揭示了在给定的一个细胞中,大部分的人类蛋白被发现存在一个以上的定位位置。  基于瑞典的Cell Atlas计划,研究人员检查了对应大部分蛋白编码基因的人类蛋白组的空间分布,空前地详细描述了蛋白在多个细

IsoPlexis单细胞蛋白质组学检测服务即将启动啦!

  重磅消息来袭  你想要的单细胞  蛋白质组学检测服务即将启动啦!  单细胞蛋白质检测技术  传统的细胞分析通常包含数千个或更多的细胞,提供了一个总体平均值,掩盖了重要的细胞异质性,尤其是一些发挥重要作用的稀有细胞群体的意义,比如免疫细胞、肿瘤细胞、干细胞等均展现出广泛的异质性。  当前,随着单细

蛋白质组,蛋白质组学及研究技术路线

基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类

蛋白质组,蛋白质组学及研究技术路线

基因组(genome)包含的遗传信息经转录产生mRNA,一个细胞在特定生理或病理状态下表达的所有种类的mRNA称为转录子组(transcriptome)。很显然,不同细胞在不同生理或病理状态下转录子组包含的mRNA的种类不尽相同。mRNA经翻译产生蛋白质,一个细胞在特定生理或病理状态下表达的所有种类

细胞外囊泡中磷酸化蛋白质组学研究

蛋白磷酸化水平的变化可指针疾病的变化,但却鲜有磷酸化蛋白被开发成为疾病诊断标记物。细胞外囊泡是由膜封闭的微环境,不受外界蛋白酶和其他酶的影响。这使得细胞外囊泡在体液中高度稳定,为开发磷酸化蛋白应用于医学诊断提供了契机。今天为大家介绍一篇细胞外囊泡中磷酸化蛋白相关的文章:Phosphoproteins

什么是蛋白质组学

(Marc Wilkins(1994))A study of proteome using the technologies of large-scale protein separation, identification and quantitation.The study of protein

蛋白质组学研究技术

可以说,蛋白质组学的发展既是技术所推动的也是受技术限制的。蛋白质组学研究成功与否,很大程度上取决于其技术方法水平的高低。蛋白质研究技术远比基因技术复杂和困难。不仅氨基酸残基种类远多于核苷酸残基(20/ 4), 而且蛋白质有着复杂的翻译后修饰,如磷酸化和糖基化等,给分离和分析蛋白质带来很多困难。此外,

蛋白质组学+AI技术

人们在吞咽的时候,颈部有个器官会随着吞咽动作上下活动,它就是甲状腺。西湖欧米有望实现临床转化的第一个项目,就是基于蛋白质标志物的甲状腺结节的良恶性诊断。甲状腺很小,但它影响到五脏六腑。数据显示,每5个成年人中就可能有1人患有甲状腺结节。其中,约60%的甲状腺结节都是良性的。但有10%的结节是恶性的,

什么是蛋白质组学

这个概念最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。目前,在蛋白质功能方面的研究是极其缺乏的。大部分通过基因组测序而新发现的基因编码的蛋白质的

什么是蛋白质组学

这个概念最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。目前,在蛋白质功能方面的研究是极其缺乏的。大部分通过基因组测序而新发现的基因编码的蛋白质的

什么是蛋白质组学

这个概念最早是在1995年提出的,它在本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。目前,在蛋白质功能方面的研究是极其缺乏的。大部分通过基因组测序而新发现的基因编码的蛋白质的

关于亚细胞定位的基本介绍

  亚细胞定位是查找生物大分子在细胞内的具体存在的位置,如在核内、胞质内或者细胞膜上存在。常见的亚细胞定位方法有生物信息学预测法、免疫荧光法、GFP融合蛋白表达法。  不同的细胞器往往具有不同的理化环境,它根据蛋白质的结构及表面理化特征,选择性容纳蛋白。  蛋白质表面直接暴露于细胞器环境中,它由序列

基于液质联用的单细胞蛋白质组学研究进展

摘要    蛋白质是细胞功能的主要执行者,由于其无法在体外进行扩增,单细胞蛋白质组学技术相较单细胞基因组学和转录组学技术而言发展相对滞后。传统的蛋白质组学技术可获得大量细胞蛋白表达的平均值,但忽略了细胞亚型及细胞异质性等信息。单细胞水平的蛋白质分析有助于阐明细胞不同表型与异质性的分子基础。随着质谱仪

蛋白质的定位

在体液中,一些疏水的分子输送非常困难。所幸的是,在体液中存在着多种这些疏水分子的运载蛋白。不仅有各种不同的载脂蛋白以专一性较广的方式运输着不同的脂质类分子(包括脂肪、胆固醇等),而且还有一些非常专一的运载蛋白负责着一些特殊疏水分子的运输,如维生素B12结合蛋白、视黄醇/甲状腺素运载蛋白(transt

空间蛋白质组学:一种强大的细胞生物学发现工具

真核细胞高度区室化,生物过程被分隔在不同的区室进行。蛋白质功能与亚细胞定位密切相关,不同的区室提供不同的化学环境(例如pH和氧化还原条件)、不同的潜在作用配体或底物。因此,对蛋白质亚细胞定位的严格控制是细胞生理学的重要调控内容。大多数细胞生物学过程涉及蛋白质亚细胞定位的变化,例如转录因子在细胞核-胞

蛋白质组学的研究内容

主要有两方面,一是结构蛋白质组学,二是功能蛋白质组学。其研究前沿大致分为三个方面:  ①针对有关基因组或转录组数据库的生物体或组织细胞,建立其蛋白质组或亚蛋白质组及其蛋白质组连锁群,即组成性蛋白质组学。  ②以重要生命过程或人类重大疾病为对象,进行重要生理病理体系或过程的局部蛋白质组或比较蛋白质组学

蛋白质组学入门问题集锦

  1 . HPLC 灵敏度不够的主要原因及解决办法   样品量不足:解决办法为增加样品量   样品未从柱子中流出:可根据样品的化学性质改变流动相或柱子   样品与检测器不匹配:根据样品化学性质调整波长或改换检测器   检测器衰减太多:调整衰减即可。   检测器时间常数太大:解决

蛋白质组学鉴定技术流程

蛋白质组(Proteome)的概念,蕞早由澳大利亚Macquarie大学的Wilkins和Williams于1994年首先提出的,是指一个基因组(Genome),或一个细胞、组织表达的所有蛋白质。蛋白质组学(Proteomics)以细胞、组织或生物体全体蛋白质为研究对象,通过高通量的色谱质谱联用技术

定量蛋白质组学的诞生

  在现代研究技术,如荧光显微镜,流式细胞仪和蛋白质芯片技术中,抗体仍然扮演着非常重要的角色。但依赖于抗体的蛋白质检测存在一些缺点,其中最大的限制就是,抗体的可用性和质量差别很大。一些大规模项目,比如人类蛋白质图谱(Human Protein Atlas),Antibodypedia,以及美国NIH

定量蛋白质组学方法分类

1 背景和意义从生命活动的直接执行者——蛋白质的角度研究生命现象和规律(特别是疾病防治和病理研究)已成为研究生命科学的主要手段。而这些研究往往离不开对细胞、组织或器官中含有蛋白质种类和表达量的研究。对处不同时期、不同条件下蛋白质表达水平变化的研究,识别功能模块和路径,监控疾病的生物标志物,这些研究都

蛋白质组学入门问题FAQ

常见问题——— HPLC 篇 1 . HPLC 灵敏度不够的主要原因及解决办法 样品量不足:解决办法为增加样品量 样品未从柱子中流出:可根据样品的化学性质改变流动相或柱子 样品与检测器不匹配:根据样品化学性质调整波长或改换检测器 检测器衰减太多:调整衰减即可。 检测器时间常数太大:解决办法为降低时间

蛋白质组学质谱分析

Proteomics Primer1. Proteomics2. 2-D PAGE3. Immobilised pH gradients (IPGs)4. Mass spectrometry5. Principles of mass spectrometry6. Matrix assisted la

蛋白质组学的样品制备

想要研究蛋白质,首先要得到高度纯化且具有生物活性的目的物质,因此,蛋白样品的制备是重要前提。蛋白提取的质量和效果对后续的研究分析有重要影响。不同种类的样本在制备过程中,存在一些差异,要根据样本特征调整实验方案和操作细节。基本原则样品处理尽量简单,减少蛋白损失;尽量避免蛋白的降解;尽可能提高样品蛋白的

蛋白质组学实验技术大全

每一个领域的发展都是基于技术的进步和革新,蛋白质组学亦然。蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。在开始实验之前,先看看这篇技术简介吧。一 蛋白质与DNA相互作用在许多的细胞生命活动中,例如DNA复制、mRNA转录与