X射线管的结构及应用

结构 固定阳极X射线管是常用X射线管中最简单的一种,其结构由阳极、阴极和固定两极并保持玻璃管内高真空的玻璃壳等三部分组成。 阳极由阳极头、阳极帽、玻璃圈和阳极柄构成。阳极的主要作用使由阳极头的靶面(一般选用钨靶)阻挡高速运动的电子流而产生X射线,并将由此产生的热量辐射或者通过阳极柄传导出去,同时也吸收二次电子和散乱射线。钨合金X射线管工作中产生X射线仅仅利用了不到高速运动电子流1%的能量,因此散热是X射线管很重要的问题。阴极主要由灯丝、聚焦罩(或者称为阴极头)、阴极套和玻璃芯柱等组成。轰击阳极靶的电子束,就是靠热阴极的灯丝(一般都是钨丝)发射出来,在钨合金X射线管高电压加速下经聚焦罩(阴极头)聚焦形成的。高速运动的电子束撞击阳极靶而突然受阻则产生了某段能量连续分布的X射线(其中并有反映阳极靶金属的特征X射线)。 应用 X射线管 在医学上用于诊断和治疗,在 工业技术方面用于材料的无损检测、结构分析、光谱分析和底片曝光等......阅读全文

关于X射线管的基本信息介绍

  利用高速电子撞击金属靶面产生 X射线的真空电子器件。按照产生电子的方式,X射线管可分为充气管和真空管两类。  充气X射线管是早期的X射线管。1895年,W.C.伦琴在进行克鲁克斯管实验时发现了 X射线。克鲁克斯管就是最早的充气X射线管。这种管接通高压后,管内气体电离,在正离子轰击下,电子从阴极逸

关于XFR的X射线管的基本介绍

  利用高速电子撞击金属靶面产生 X射线的真空电子器件。按照产生电子的方式,X射线管可分为充气管和真空管两类。  充气X射线管是早期的X射线管。1895年,W.C.伦琴在进行克鲁克斯管实验时发现了 X射线。克鲁克斯管就是最早的充气X射线管。这种管接通高压后,管内气体电离,在正离子轰击下,电子从阴极逸

X射线管的应用及常见故障

  应用  X射线管 在医学上用于诊断和治疗,在 工业技术方面用于材料的无损检测、结构分析、光谱分析和底片曝光等。X射线对人体有害,使用时须采取有效防护措施。  常见故障分析  故障一 :旋转阳极转子的故障  (1)现象  ① 电路正常,但转速明显下降;静转时间短;曝光时阳极不转动 ;② 曝光时,管

简述X射线管的基本原理

  X 射线管包含有阳极和阴极两个电极,分别用于用于接受电子轰击的靶材和发射电子的灯丝。两极均被密封在高真空的玻璃或陶瓷外壳内。X 射线管供电部分至少包含有一个使灯丝加热的低压电源和一个给两极施加高电压的高压发生器。当钨丝通过足够的电流使其产生电子云,且有足够的电压(千伏等级)加在阳极和阴极间,使得

X射线管激发X荧光光谱连续本底扣除方法研究

X射线管是目前X射线荧光光谱分析中最常采用的激发源,它所产生的原级谱成为了X荧光光谱中本底成分的主要来源,在对这种光谱进行进一步的分析处理之前需要对其本底进行扣除,对本底估计的准确性直接影响后续处理步骤的效果。对射线管激发X荧光光谱的成分进行了分析,针对其本底特点构造了一种本底强度的估计方法,并根据

X射线管结构和各部分作用

X射线管构成:阴极:灯丝:发射电子。阴极头:灯丝支座,聚焦电子。阳极:靶,遏制电子,发出X射线。阳极体:支承靶,传递靶热量。按照产生电子的方式,X射线管可分为充气管和真空管两类。根据密封材质不同,可分为玻璃管、陶瓷管和金属陶瓷管。根据用途不同,可分为医疗X射线管和工业X射线管。根据密封方式不同,可分

影响X射线管寿命的因素与保养方法

  温度因素:  温度是影响X射线管寿命的重要因素。X射线管在使用过程中会产生大量的热量。为使产品稳定工作,阳极应加散热装置,确保阳极温度不超过55℃,必要时可采用风冷冷却。建议客户使用温度传感器控制温度。  环境因素:  环境温度5-30℃,空气相对湿度小于80%。  保管与存放:  产品存放环境

掠射X射线望远镜的简介

  一种使天体X辐射成像的仪器。X射线很易被介质吸收﹐且在介质中其折射率近于1。这表明﹐折射系统不可能用在X射线波段﹐而X射线在非常倾斜的掠射角下将产生全反射。掠射 X射线望远镜就是利用这种全反射原理设计而成的。1952年﹐沃尔特首先建议利用X射线掠射的全反射现象来进行光学聚焦﹐使用两个同轴共焦旋转

掠射X射线望远镜的分类

  X射线望远镜光学系统一般采用沃尔特Ⅰ型──抛物面焦点与双曲面的后焦点重合的同轴光学系统。其焦平面通过双曲面的前焦点。按照制作工艺来划分,X射线望远镜的研制已经历三代。第一代镜面是铝制的,效率为1%,1963年用这种望远镜拍摄到分辨率为几角分的照片,可看出太阳上存在着X射线发射区。第二代镜面是在光

掠射软X射线荧光分析技术研究

掠射X射线分析是近年来迅速发展的一门分析技术,在科学研究以及分析检测和质量控制等生产领域都有着广泛的应用。X射线分析技术具有试样无损分析、制样经济方便、操作简单、分析结果重现性好及精度高等优点,使得这项技术在薄膜特性分析、半导体材料及磁铁材料表面检测方面受到特别的青睐。本文在综述了国内外掠射X射线荧

X射线能谱微区分析中出射角对X射线强度的影响

利用SEM-EDS研究了硅衬底上Au、Cu薄膜发射的不同线系特征X射线相对强度间比值随出射角的变化规律,探讨了影响其变化的原因。结果显示:随着出射角变大,同一元素不同线系X射线相对强度间比值具有一定变化规律。低能量谱线的强度相对高能量谱线逐渐变大,这种变化主要是受X射线被基体吸收效应的影响所致。在低

X射线管的维护对X荧光光谱仪的使用有重要意义

    X荧光光谱仪中X射线管灯丝烧断原因有:灯丝本身损耗、X射线管的高压真空破坏、铍窗漏气。使用与维护中注意,超过lh不用仪器时,将X射线管设置为待机状态;超过两星期不用仪器时,将X射线管高压关闭;超过十星期不用仪器时,将X射线管拆下,千万不要通过关闭冷却水去关闭X射线管高压。探讨延长X射线管使用

X射单晶末衍射仪对检测样品的要求

  送检样品必须为单晶,选择晶体时要注意所选晶体表面光洁、颜色和透明度一致。  不附着小晶体,没有缺损重叠、解理破坏、裂缝等缺陷。  晶体长、宽、高的尺寸均为0.1~0.4mm ,即晶体对角线长度不超过0.5mm(大晶体可用切割方法取样,小晶体则要考虑其衍射能力)。

单波长能量色散X射线荧光分析技术

  单波长能量色散X射线荧光分析技术(Monochromatic Excitation Beam Energy Dispersive X-Ray Fluorescence),就是依靠双曲面弯晶、二次靶或者多层膜弯晶等技术,将X射线管出射谱中的单一能量衍射聚焦到样品一点,激发样品中元素荧光,这样极大降

多晶体衍射仪的X射线发生器相关介绍

  X射线发生器由X射线管、高压发生器、管压和管流稳定电路以及各种保护电路等部分组成。  现代衍射用的X射线管都属于热电子管,有密封式和转靶式两种。前者最大的功率在2.5KW以内,视靶材料的不同而异;后者是为获得高强度X射线而设计的,一般功率在10KW以上,目前常用的有9KW、12KW和18KW几种

什么是单波长X射线荧光光谱仪

通常的X射线荧光光谱仪分为能量色散X射线荧光光谱仪(ED XRF)和波长色散X射线荧光光谱仪(WD XRF),其以X射线管出射谱照射样品后产生的元素荧光射线是以能量色散型探测器直接探测(ED XRF)或是经分光晶体分光后探测器探测(WD XRF)为主要区别。单波长X射线荧光光谱仪是在X射线照射样品前

什么是单波长X射线荧光光谱仪

通常的X射线荧光光谱仪分为能量色散X射线荧光光谱仪(ED XRF)和波长色散X射线荧光光谱仪(WD XRF),其以X射线管出射谱照射样品后产生的元素荧光射线是以能量色散型探测器直接探测(ED XRF)或是经分光晶体分光后探测器探测(WD XRF)为主要区别。单波长X射线荧光光谱仪是在X射线照射样品前

单波长X射线荧光光谱仪原理与应用

  一、 概述  单波长X射线荧光光谱仪(Monochromatic Excitation X-ray Fluorescence Spectrometer: ME XRF),也可称为单色化激发X射线荧光光谱仪,其通过单色化光学器件将X射线管出射谱某单一波长(对应单一能量)衍射取出并照射样品,由于消除

X射线衍射仪的基本原理和构造

 X射线衍射仪分为单晶衍射仪和多晶衍射仪两种。单晶衍射仪的被测对象为单晶体试样,主要用于确定未知晶体材料的晶体结构。基本原理:在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出晶体的结构。   

X射线衍射仪主要由以下四个结构组成

 X射线衍射仪分为单晶衍射仪和多晶衍射仪两种。单晶衍射仪的被测对象为单晶体试样,主要用于确定未知晶体材料的晶体结构。基本原理:在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出晶体的结构。  X

实验室光学仪器X射线荧光光谱仪常用的荧光激发方法

 一、用放射性同位素源激发源激发是将少量的放射性同位素,如55Fe(铁)、109Cd(镉)等物质固封在密封的留有小孔的铅罐中,连续发射出低能γ射线,经准直后照射到被测物质上产生X荧光。同位素源发出的X射线强度是非常稳定的,但是X射线强度小,能力分布不可调。优点:单色性好、信噪比高、体积小、重量轻。适

什么是全反射X射线荧光光谱仪技术?

  全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。   XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系统

镍钯金测厚仪博曼BA100测厚领域专家

博曼BA-100X射线荧光(XRF)仪器的工作原理是对被测样脾射一束一次X射线,样品的原子吸收X射线的能量后被激发并释放出二次X射线。每个化学元素会释放出特定能量的X射线。通过测量这些释放出的二次X射线的特征能量和强度,X射线分析仪就能够对被测材料的镀层厚度和成份提供定性和定量的分析1:品牌:美国博

山东实施海洋生态红线管理

  “我们严格环境准入,对不符合海洋功能区划、海洋环保规划和海洋生态红线管理的海洋开发活动,实施一票否决。目前,正在组织修编《烟台市海域使用规划》、《烟台市海洋生态红线区规划》、《烟台市海岸保护利用规划》等规划,对生态系统敏感区和重要生态功能区进行保护,对开发活动的内容、方式和强度进行约束。”近日在

磁透镜螺线管相关介绍

  在物理学里,术语螺线管指的是多重卷绕的导线,卷绕内部可以是空心的,或者有一个金属芯。当有电流通过导线时,螺线管内部会产生均匀磁场。螺线管是很重要的元件·。很多物理实验的正确操作需要有均匀磁场。螺线管也可以用为电磁铁或电感器。  通电螺线管的极性跟电流方向间的关系,可以用右手螺旋定则来判断。就是用

单波长色散型X荧光光谱仪原理及优缺点

  单波长色散X射线荧光光谱仪应该称作单波长激发—波长色散X射线荧光光谱仪。     单波长色散型X荧光光谱仪原理:     用全聚焦型双曲面弯晶将微焦斑X线管(可看作点光源)发射的原级X射线的某个波长(通常选取出射谱中的特征X射线)的X射线单色化并聚焦于样品测试表面,激发样品中元素的荧光X射线。由

X荧光光谱仪的工作原理(一)

X荧光光谱仪(XRF)是一种较新型的可以对多元素进行快速同时测定的仪器。在X射线激发下,被测元素原子的内层电子发生能级跃迁而发出次级X射线(即X荧光)。波长和能量是从不同的角度来观察描述X射线所采用的两个物理量。波长色散型X荧光光谱仪(WD-XRF)是用晶体分光而后由探测器接收经过衍射的特征X射线信

持续高温,小心热射病!

  还没进入三伏天,高温已持续来袭。面对“热气腾腾”的天气,提醒大家,热射病不得不防。  热射病是怎么回事?  热射病是高温相关急症中最严重的情况,即重症中暑,是由于暴露在高温高湿环境中身体调节功能失衡,产热大于散热,导致核心温度迅速升高,超过40℃,伴有皮肤灼热、意识障碍(例如谵妄、惊厥、昏迷)及

光出射度的定义

光出射度(luminous exitance)光出射度是表征光源自身性质的一个物理量。光源的光通量除以光源的面积就得到光源的光出射度值。光出射度用lm/㎡表示,但与照度测试和lux不同,光出射度中的面积是指光源的面积,而不是被照射的面积。平板发射会测试该值。 [3] 漫反射面受光照后,其光出射度与光

X-射线荧光光谱仪

用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。图