什么是全反射X射线荧光光谱仪技术?

全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。 XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系统,对于三级反射系统,如图1所示,光源出射的原级X射线经过前两级反射体的滤波和高能切割,形成单色性极佳的X射线,再入射到涂有样品的第三级反射体上激发出样品的特征X射线,最后被探测器接收并由检测系统进行记录处理。 创想X射线荧光光谱仪 为了获得全反射,原级X射线的入射角必须小于临界角(中),φ。的定义为:入射X射线刚好发生反射现象时的人射角度。忽略在吸收限处的共振和量子效应,由经典色散理论可推出临界角公式1/2中: = (5.4 x 10"Zp\3/A)(2)式中:Z为原子序数;p为密度,g/cm2 ;λ为人射X射线的波长......阅读全文

全反射的定义

光由相对光密介质射向相对光疏介质,且入射角大于等于临界角C,即可发生全反射。临界角即使折射角等于90°时的入射角。根据折射定律, 。因为空气的折射率n=1,所以由某介质向空气入射则简化为n=1/sinC.

全反射傅里叶变换红外(ATRFTIR-)-光谱仪的衰减全反射特点

  1) 不破坏样品, 不需要象透射红外光谱那样要将样品进行分离和制样。对样品的大小, 形状没有特殊要求, 属于样品表面无损测量。  2) 可测量含水和潮湿的样品。  3) 检测灵敏度高, 测量区域小, 检测点可为数微米。  4) 能得到测量位置处物质分子的结构信息、某化合物或官能团空间分布的红外光

衰减全反射光谱的原理

红外光谱是分析化合物结构的重要手段。常规的透射法使用压片或涂膜进行测量,对某些特殊样品( 如难溶、难熔、难粉碎等的试样) 的测试存在困难。为克服其不足,20世纪60年代初出现了衰减全反射(Attenuated Total Refraction,ATR) 红外附件,但由于受当时色散型红外光谱仪性能的限

全反射X射线荧光(TXRF)应用简介

  全反射X射线荧光(TXRF)具有优异的检出限(低至ppt或pg),与其它具有类似元素检出限的检测手段相比,具有基体效应小、样品需求量小、操作相对简单、运行成本低等优势。  TXRF一次可以对70多种元素进行同时分析,这是原子吸收ETAAS和FAAS方法难以完成的。与质谱仪中的ICP-MS和GDM

全反射荧光光谱仪基本介绍

  全反射荧光光谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2014年12月1日启用。  技术指标  检出限可以达到 ppb 和 ppm 级别,S2 PICOFOX 非常适用于痕量元素分析。在样品数量较少、液体样品含有高基质以及样品种类经常变化的情况下,优势十分明显。  主要功能  便

全反射X荧光光谱仪的基本介绍

  全反射荧光光谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2014年12月1日启用。  1、技术指标  检出限可以达到 ppb 和 ppm 级别,S2 PICOFOX 非常适用于痕量元素分析。在样品数量较少、液体样品含有高基质以及样品种类经常变化的情况下,优势十分明显。  2、主要功

X射线荧光光谱仪的全反射荧光

  如果n1>n2,则介质1相对于介质2为光密介质,介质2相对于介质1为光疏介质。对于X射线,一般固体与空气相比都是光疏介质。所以,如果介质1是空气,那么α1>α2,即折射线会偏向界面。如果α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1

全反射X射线荧光分析仪原理及特点

   全反射X荧光光谱仪原理是基于X荧光能谱法,但与X射线能谱形成对比的是“传统能谱采用原级X光束以45°角轰击样品,而TXRF采用毫弧度的临界角。由于采用此种近于切线方向的入射角,原级X光束几乎可以全部被反射,照射在样品表面后,可以zui大程度上避免样品载体吸收光束和减小散射的发生,同时减小了载体

超快非线性光学技术:时域全反射和波导

麦克斯伟方程在时间和空间具有一定的对偶性(duality),比如空间上高斯光束的衍射与时间上高斯脉冲在具有负群速度色散的光纤中传输就具有这样的关系。科学家们对光的空间传输性质已经进行了几百年的研究,取得了丰硕成果。通过考察时空对偶性,借鉴光的空间传输现象,有利于理解甚至发现崭新的由超短脉冲参与的超快

TXRF8全反射X射线荧光分析仪

  全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了EDXRF方法的优越

TXRF8全反射X射线荧光分析仪

  产品介绍   全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了ED

全反射X荧光光谱仪的特点介绍

  1、单内标校正,有效简化了定量分析,无基体影响;  2、对于任何基体的样品可单独进行校准和定量分析;  3、多元素实时分析,可进行痕量和超痕量分析;  4、不受样品的类型和不同应用需求影响;  5、的液体或固体样品的微量分析,分析所需样品量小;  6、优良的检出限水平,元素分析范围从钠覆盖到钚;

全反射X荧光技术在痕量元素检测中的应用

 TX2000全反射X荧光光谱仪  高沸点石油化工产品及其衍生物中痕量元素的检测是一项挑战性工作,目前检测手段主要为AAS、ICP-OES、EDXRF等。 样品测量结果与样品前处理息息相关。前处理方法包括稀释样品,灰化法分解样品,湿法分解样品等。但是这些前处理手段都有其不足之处,如高温易挥发元素损失

全反射X荧光(TXRF)分析技术发展前景可观

  全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了EXRF方法的优越性,

»-正文-TXRF8全反射X射线荧光分析仪

  产品介绍   全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了ED

全反射X射线荧光光谱仪(TXRF)组成结构

  反射X射线荧光光谱仪(TXRF)主要包括:X射线源、光路系统、进样系统、探测器、数据处理系统及其他附件,下文主要介绍前四部分。  一、X射线源:由高压发生器及射线管组成。提供初级X射线,对样品中待测元素进行激发得到X射线荧光,其强度正比于初级X射线的强度。通常,XRD或XRF发生器便可满足TXR

全反射X射线荧光光谱仪技术相关介绍

   全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。   XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系

什么是全反射X射线荧光光谱仪技术?

  全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。   XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系统

薄膜外全反射角X射线能谱分析研究

电子探针微区分析(EPMA,XRMA)由于X射线激发深度较大而对薄层分析产生困难,无法准确确定分析结果是样品表面的成分还是样品体相的成分。本工作首先从理论上探讨了薄膜产生全反射的的条件,然后在通常的x射线微区分析设备上,采用外全反射角X射线能谱微分析方法,通过对硅衬底上不同膜厚的铝膜和铜膜的测定,探

表面层外全反射角X射线能谱微分析

电子探针微区分析(EPMA,XRMA)由于X射线激发深度较大而对薄层分析产生困难,无法准确确定分析结果是样品表面的成分还是样品体相的成分。本工作在通常的X射线微区分析设备上,采用外全反射角X射线能谱微分析方法,通过对硅衬底上不同膜厚的铝膜和铜膜的测定,探索出一种区分膜成分和体相成分的新方法。结果表明

TXRF全反射X射线荧光光谱仪的相关介绍

  TXRF全反射X射线荧光光谱仪快速多元素痕量分析可对固体、粉末、液体、悬浮物、过滤物、大气飘尘、薄膜样品等进行定性、定量分析,元素范围13Al-92U。  需要样品量少,液体及悬浮物样品1-50微升,粉末样品10微克以内。  便携式全反射荧光仪,设备小巧,一体化结构设计,不需要任何辅助设备及气体

傅里叶红外光谱仪ATR衰减全反射法

ATR衰减全反射法常规的透射光谱可用压片或液体池法进行测量,但是对于某些特殊样品,难熔、难溶及难粉碎的试样(如塑料聚合物、橡胶等),透射光谱存在制样困难的问题。衰减全反射(Attenuated Total Refraction,ATR)红外附件可以完美的解决这些问题。它具有制样简单、无破坏性、检测灵

全反射X射线荧光光谱仪(TXRF)原理及结构简述

  X射线荧光(XRF)是当原级X射线照射样品时,受激原子内层电子产生能级跃迁所发射的特征二次X射线。该二次X射线的能量及强度可被探测,与样品内待测元素的含量相关,此为XRF光谱仪的理论依据。  根据分光系统的不同,XRF光谱仪主要有波长色散型(WDXRF)和能量色散型(EDXRF)两种,二者结构示

全反射X射线荧光光谱仪的技术指标和功能

  全反射X射线荧光光谱仪是一种用于材料科学领域的分析仪器,于2016年11月28日启用。  一、技术指标  可分析元素范围:Al~U(靶元素和与靶元素干扰严重的元素除外) 浓度范围:10-9~100% 检出限:Ni≤2pg 激发源:最大功率≥30W;最大激发电压≥50kV,最大激发电流≥1mA 探

全反射XRF对武汉市大气颗粒物有害元素浓度的分析

大气颗粒污染物分析,特别是对人体健康危害最大、小于2.5μm的颗粒(PM2.5)的大气颗粒污染物进行有效分析,并非一般非核分析技术能够胜任,必须采用现代核分析技术,由于TXRF是一种快速多元素分析方法,可以进行ng量级的痕量分析,且分析样品时所需样品量很少,所以对于大气飘尘来说,TXRF为一理想的分

理学推出全反射X射线荧光光谱仪-镉元素检测有优势

  近日,日本理学宣布推出新一代理学NANOHUNTER II台式全反射X射线荧光(TXRF)光谱仪,液体或固体表面高灵敏度痕量元素分析达到ppb水平。全反射X射线荧光光谱通过一种途径使X射线入射光束刚好擦过样品,来实现低背景噪音、高灵敏度的超微量元素测量。NANOHUNTER II台式全反射X射线

用于制造-X-射线荧光分析全反射镜的高质量表面精磨工艺

  01 导言  X 射线反射镜是一种能反射和聚焦短波长 X 射线(束)的反射光学元件,广泛应用于各种分析仪器中。为了有效表征 X 射线的光学和物理性质,各种反射镜形态须达到平均粗糙度在亚纳米级的高表面精度。便携式 X 射线元素分析仪基于全反射 X 射线荧光 (TXRF) 分析技术构建,应用于需要超

全反射X射线荧光TXRF在血清样品Cu-Zn-Se定量分析中的应用

   X射线荧光光谱(XRF)技术是一项可用于确定各类材料成份构成的分析技术,已经成熟运用多年。其应用方向主要包括金属合金、矿物、石化产品等等。而全反射X射线荧光作为X射线荧光中的后起之秀,因为制样简单且具有可与原子吸收光谱 (AAS), 电感耦合等离子体质谱 (ICP-MS) 比拟的低至PPb级别

光纤传感器的原理及特征

  1、光纤的构造   根柢选用石英玻璃,有纷歧样掺杂,首要由三有些构成,如图1所示。   基地——纤芯;   外层——包层;   护套——尼龙料。    光纤传感器的原理_光纤传感器的特征   2、光纤传感器的原理及分类   光纤的传达依据光的全反射。当光线以纷歧

光纤传感器的原理及特征

  1、光纤的构造   根柢选用石英玻璃,有纷歧样掺杂,首要由三有些构成,如图1所示。   基地——纤芯;   外层——包层;   护套——尼龙料。    光纤传感器的原理_光纤传感器的特征   2、光纤传感器的原理及分类   光纤的传达依据光的全反射。当光线以纷歧