实验室X射线荧光光谱的相关介绍
X射线荧光光谱分析仪(XFR)是一种精密分析仪器,在20世纪80年代初就已经是一种成熟的分析方法,但仪器价格昂贵。作为一种重要的多元素分析手段,仪器工作分析原理是用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线强度,以进行定性和定量分析。适用于钢铁行业、金属材料、生物化工原料等很多行业中。微源检测分享一则利用X射线荧光光谱分析检测矿石样本的案例。 将矿石样品用粉碎机磨成粉末,烘烤后准确称取3.0g样品与硼酸在玛瑙研钵充分研磨混匀,完成压片,压片后在干燥无污染的环境中贴签保存,进行无标样全定量分析法分析。检测出样品中含量在10μg•g-1以上的所有金属和非金属元素,得出样品中所含有的6种常量元素。原全元素的检测分析不仅工作量大、耗时长,而且操作繁重,采用XRF法结合分析方法完成了精密度要求,大大简化实验分析过程,并且效果很好。......阅读全文
实验室X射线荧光光谱的相关介绍
X射线荧光光谱分析仪(XFR)是一种精密分析仪器,在20世纪80年代初就已经是一种成熟的分析方法,但仪器价格昂贵。作为一种重要的多元素分析手段,仪器工作分析原理是用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线强
X射线荧光光谱仪荧光光谱的相关介绍
能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的 半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁
X射线荧光光谱仪相关知识介绍
X射线荧光光谱仪是一种常用的光谱仪产品,可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。X射线荧光光谱仪具有灵明度强、度高、检测范围广、自动快速等特点,广泛应用于地质、冶金、有色金属加工、建材、考古等领域,在主、次量和痕量元素分析中发挥的作用日趋重要
X射线荧光光谱仪分类的相关介绍
按照色散方式的不同,X射线荧光光谱仪可以分为2类:波长色散型X射线荧光光谱仪(WDXRF)和能量色散型X射线荧光光谱仪(EDXRF)。 能量色散型x射线光谱仪 现代应用X射线荧光光谱分析技术目前已在地质、冶金、材料、环境等无机分析领域得到了广泛的应用,是各种无机材料中主组分分析最重要的技术手
X射线荧光分析的相关介绍
确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。
X射线荧光仪的相关介绍
X射线荧光仪一般是采用,激发样品中的目标元素,使之产生特征X射线,通过测量特征X射线的照射量率来确定目标元素及其含量的仪器。 仪器分为室内分析、野外便携式和X射线荧光测井仪三种类型。各种类型的仪器均由探测器和操作台两部分组成。由于目前使用的探测器(正比计数管及闪烁计数器)能量分辨率不高,不能区
X射线荧光光谱仪X射线吸收的介绍
当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。 当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律: 式中,μ为质量衰减系数;ρ为样
X射线荧光光谱仪X射线的衍射介绍
相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。 其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。 另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体
X射线荧光光谱仪X射线散射的介绍
除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。 相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原
波长色散X射线荧光光谱仪相关介绍
X射线荧光光谱仪根据分光方式不同,可分为波长色散和能量色散X射线荧光光谱仪两大类;根据激发方式又可细分为偏振光、同位素源、同步辐射和粒子激发X射线荧光光谱仪;根据X射线的出射、入角还可有全反射、掠出入射X射线荧光光谱仪等。波长色散XRF光谱仪利用分光晶体的衍射来分离样品中的多色辐射,能量色散光谱仪则
X射线荧光光谱仪相关特点
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平
关于X射线荧光光谱的介绍
X射线荧光光谱(XRF, X Ray Fluorescence)是通常把X射线照射在物质上而产生的次级X射线叫X射线荧光(X-Ray Fluorescence),受激发的样品中的每一种元素会放射出X射线荧光,并且不同的元素所放射出的X射线荧光具有特定的能量特性或波长特性。探测系统测量这些放射出来
X射线荧光分析技术相关介绍
X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。 X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的
X射线荧光分析技术的相关介绍
X射线荧光分析是确定物质中微量元素的种类和含量的一种方法。 X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S
X射线荧光法的相关介绍
X射线荧光法是用,照射待测样品,使受激元素产生二次特征X射线(即荧光),使用X射线荧光仪测量并记录样品中待测元素的特征X射线照射量率,从而确定样品的成分和目标元素含量的方法。 方法的特点是操作简单,速度快,可以进行原位测量,在现场获得目标元素的含量;划分矿与非矿的界限,代替或部分代替刻槽取样。
X射线荧光的产生相关介绍
当一束粒子如X射线光子与一种物质的原子相互作用时,在其能量大于原子某一轨道电子的结合能时,就可从中逐出一个轨道电子而出现一个“空穴”,层中的这个“空穴”可称作空位。原子要恢复到原来的稳定状态,这时处于较高能级的电子将依据一定的规则跃迁而填补该“空穴”,这一过程将使整个原子的能量降低,因此可以自发
全反射X射线荧光光谱仪技术相关介绍
全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。 XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系
TXRF全反射X射线荧光光谱仪的相关介绍
TXRF全反射X射线荧光光谱仪快速多元素痕量分析可对固体、粉末、液体、悬浮物、过滤物、大气飘尘、薄膜样品等进行定性、定量分析,元素范围13Al-92U。 需要样品量少,液体及悬浮物样品1-50微升,粉末样品10微克以内。 便携式全反射荧光仪,设备小巧,一体化结构设计,不需要任何辅助设备及气体
X射线荧光光谱原理
X射线荧光光谱分析在20世纪80年代初已是一种成熟的分析方法,是实验室、现场分析主、次量和痕量元素的方法之一。 X射线荧光光谱仪(XRF)是利用原级X射线或其他光子源激发待测物质中的原子,使之产生荧光(次级X射线),从而进行物质成分分析的仪器。X射线荧光光谱仪又称XRF光谱仪,有波长色散型和能
x射线衍射、x荧光、直读光谱区别
1、X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域. X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业. 基
X射线荧光的简介和相关仪器介绍
通常把X射线照射在物质上而产生的次级X射线叫做X射线荧光(X-Ray Fluorescence),而把用来照射的X射线称为原级X射线,所以X射线荧光光谱仪仍然属于X射线范畴。一台典型的X射线荧光光谱仪主要由激发源(X射线管)和探测系统构成。X射线管主要负责产生入射X射线(一次X射线),随后该射线
X射线荧光光谱的概念
X射线荧光光谱(XRF):X射线荧光光谱按 分 离 特 征 谱 线 的 方 法 分 为 波 长 色 散 型(WD-XRF)和 能 量 色 散 型(ED-XRF)两种。WD-XRF与ED-XRF的区别在于前者是用分光晶体将荧光光束进行色散,而后者则是借助高分辨率敏感半导体检测器与多道分析器将所得信号按
X射线荧光光谱分析仪检测的相关介绍
X射线荧光光谱分析仪检测过程制样简单无需复杂的化学预处理方式,是最基本的制样方法,检测方法快速简便,经济且不会造成其他污染,仪器检测的优势得到了充分的发挥和展现,除了矿石检测,XRF在在土壤和环境样品分析中的应用也愈发重要,还应用于钢铁、冶金、水泥、商检等各个领域,而且还在向更细化的研究领域逐步
X射线荧光光谱法的定量分析相关介绍
X射线荧光光谱法进行定量分析的依据是元素的荧光X射线强度I1与试样中该元素的含量Wi成正比: Ii=IsWi 式中,Is为Wi=100%时,该元素的荧光X射线的强度。根据上式,可以采用标准曲线法,增量法,内标法等进行定量分析。但是这些方法都要使标准样品的组成与试样的组成尽可能相同或相似,否则试
概述X射线荧光光谱仪X射线的产生
根据经典电磁理论,运动的带电粒子的运动速度发生改变时会向外辐射电磁波。实验室中常用的X射线源便是利用这一原理产生的:利用被高压加速的电子轰击金属靶,电子被金属靶所减速,便向外辐射X射线。这些X射线中既包含了连续谱线,也包括了特征谱线。 1、连续谱线 连续光谱是由高能的带电粒子撞击金属靶面时受
X射线荧光光谱和荧光光谱-区别
一、理论上。荧光光谱是比较宽的概念,包括了X射线荧光光谱。二、从仪器分析上,荧光光谱分析可以分为:X射线荧光光谱分析、原子荧光光谱分析,1)X射线荧光光谱分析——发射源是Rh靶X光管2)原子荧光光谱分析——可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、
X射线荧光光谱法的荧光产额介绍
当一束能量足够大的X射线光子与一种物质的原子相互作用时,逐出一个轨道电子而出现一个空穴,所产生的的空穴并非均能产生特征X射线,还会产生俄歇电子。产生特征X射线跃迁的概率就是荧光产额,俄歇跃迁的概率成俄歇产额。
X射线荧光光谱仪的优点介绍
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象,适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。特别是在RoHS检测领域应用得多也广泛。 X射线荧光光谱仪的优点: 1) 分析速度快。测定用时与测
X射线荧光光谱仪的详细介绍
X射线荧光光谱(XRF)是一种应用十分广泛的元素分析方法,利用X射线荧光光谱仪可以直接分析固体、粉末和液体样品,具有制样简单、测试效率高、可以进行非破坏性分析等特点。秒中对样品进行快速合金分析,秒即可进行实验室精度的测量。具有合金分析软件,内嵌数百种常见合金号,中英文界面自由切换、操作简易,即使
X射线荧光光谱仪的优点介绍
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象,适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。特别是在RoHS检测领域应用得多也广泛。 X射线荧光光谱仪的优点: 1) 分析速度快。测定用时与