全反射X射线荧光光谱仪技术相关介绍

全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。 XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系统,对于三级反射系统,如图1所示,光源出射的原级X射线经过前两级反射体的滤波和高能切割,形成单色性极佳的X射线,再入射到涂有样品的第三级反射体上激发出样品的特征X射线,最后被探测器接收并由检测系统进行记录处理。 为了获得全反射,原级X射线的入射角必须小于临界角(中),φ。的定义为:入射X射线刚好发生反射现象时的人射角度。忽略在吸收限处的共振和量子效应,由经典色散理论可推出临界角公式1/2中: = (5.4 x 10"Zp\3/A)(2)式中:Z为原子序数;p为密度,g/cm2 ;λ为人射X射线的波长,cm;λ反射体的原子......阅读全文

全反射X射线荧光光谱仪技术相关介绍

   全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。   XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系

TXRF全反射X射线荧光光谱仪的相关介绍

  TXRF全反射X射线荧光光谱仪快速多元素痕量分析可对固体、粉末、液体、悬浮物、过滤物、大气飘尘、薄膜样品等进行定性、定量分析,元素范围13Al-92U。  需要样品量少,液体及悬浮物样品1-50微升,粉末样品10微克以内。  便携式全反射荧光仪,设备小巧,一体化结构设计,不需要任何辅助设备及气体

什么是全反射X射线荧光光谱仪技术?

  全反射现象由Compton于1923年发现,1971年Yoneda等首次提出利用全反射现象来激发被测元素的特征谱线。这是一种超衡量检测XRF技术。   XRF于1981年在德国问世,实质上是EDXRF的拓展,与常规EDXRF所具有的关键区别就在于其反射系统:TXRF通常有一级、二级或三级反射系统

X射线荧光光谱仪的全反射荧光

  如果n1>n2,则介质1相对于介质2为光密介质,介质2相对于介质1为光疏介质。对于X射线,一般固体与空气相比都是光疏介质。所以,如果介质1是空气,那么α1>α2,即折射线会偏向界面。如果α1足够小,并使α2=0,此时的掠射角α1称为临界角α临界。当α1

全反射X射线荧光光谱仪(TXRF)组成结构

  反射X射线荧光光谱仪(TXRF)主要包括:X射线源、光路系统、进样系统、探测器、数据处理系统及其他附件,下文主要介绍前四部分。  一、X射线源:由高压发生器及射线管组成。提供初级X射线,对样品中待测元素进行激发得到X射线荧光,其强度正比于初级X射线的强度。通常,XRD或XRF发生器便可满足TXR

全反射X射线荧光光谱仪的技术指标和功能

  全反射X射线荧光光谱仪是一种用于材料科学领域的分析仪器,于2016年11月28日启用。  一、技术指标  可分析元素范围:Al~U(靶元素和与靶元素干扰严重的元素除外) 浓度范围:10-9~100% 检出限:Ni≤2pg 激发源:最大功率≥30W;最大激发电压≥50kV,最大激发电流≥1mA 探

X射线荧光分析技术相关介绍

  X光荧光分析又称X射线荧光分析(XRF)技术,即是利用初级X射线光子或其他微观粒子激发待测样品中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学形态研究的方法。  X射线是一种电磁辐射,按传统的说法,其波长介于紫外线和γ射线之间,但随着高能电子加速器的发展,电子轫致辐射所产生的X射线的

全反射X射线荧光(TXRF)应用简介

  全反射X射线荧光(TXRF)具有优异的检出限(低至ppt或pg),与其它具有类似元素检出限的检测手段相比,具有基体效应小、样品需求量小、操作相对简单、运行成本低等优势。  TXRF一次可以对70多种元素进行同时分析,这是原子吸收ETAAS和FAAS方法难以完成的。与质谱仪中的ICP-MS和GDM

X射线荧光分析技术的相关介绍

  X射线荧光分析是确定物质中微量元素的种类和含量的一种方法。  X射线荧光分析又称X射线次级发射光谱分析。本法系利用原级X射线光子或其它微观粒子激发待测物质中的原子,使之产生次级的特征X射线(X光荧光)而进行物质成分分析和化学态研究的方法。1948年由H.费里德曼(H.Friedmann)和L.S

X射线荧光光谱仪相关知识介绍

X射线荧光光谱仪是一种常用的光谱仪产品,可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。X射线荧光光谱仪具有灵明度强、度高、检测范围广、自动快速等特点,广泛应用于地质、冶金、有色金属加工、建材、考古等领域,在主、次量和痕量元素分析中发挥的作用日趋重要

全反射X射线荧光光谱仪(TXRF)原理及结构简述

  X射线荧光(XRF)是当原级X射线照射样品时,受激原子内层电子产生能级跃迁所发射的特征二次X射线。该二次X射线的能量及强度可被探测,与样品内待测元素的含量相关,此为XRF光谱仪的理论依据。  根据分光系统的不同,XRF光谱仪主要有波长色散型(WDXRF)和能量色散型(EDXRF)两种,二者结构示

全反射X荧光光谱仪的基本介绍

  全反射荧光光谱仪是一种用于环境科学技术及资源科学技术领域的分析仪器,于2014年12月1日启用。  1、技术指标  检出限可以达到 ppb 和 ppm 级别,S2 PICOFOX 非常适用于痕量元素分析。在样品数量较少、液体样品含有高基质以及样品种类经常变化的情况下,优势十分明显。  2、主要功

全反射X荧光光谱仪的特点介绍

  1、单内标校正,有效简化了定量分析,无基体影响;  2、对于任何基体的样品可单独进行校准和定量分析;  3、多元素实时分析,可进行痕量和超痕量分析;  4、不受样品的类型和不同应用需求影响;  5、的液体或固体样品的微量分析,分析所需样品量小;  6、优良的检出限水平,元素分析范围从钠覆盖到钚;

波长色散X射线荧光光谱仪相关介绍

X射线荧光光谱仪根据分光方式不同,可分为波长色散和能量色散X射线荧光光谱仪两大类;根据激发方式又可细分为偏振光、同位素源、同步辐射和粒子激发X射线荧光光谱仪;根据X射线的出射、入角还可有全反射、掠出入射X射线荧光光谱仪等。波长色散XRF光谱仪利用分光晶体的衍射来分离样品中的多色辐射,能量色散光谱仪则

X射线荧光光谱仪分类的相关介绍

  按照色散方式的不同,X射线荧光光谱仪可以分为2类:波长色散型X射线荧光光谱仪(WDXRF)和能量色散型X射线荧光光谱仪(EDXRF)。  能量色散型x射线光谱仪  现代应用X射线荧光光谱分析技术目前已在地质、冶金、材料、环境等无机分析领域得到了广泛的应用,是各种无机材料中主组分分析最重要的技术手

X射线荧光光谱仪荧光光谱的相关介绍

  能量色散X射线荧光光谱采用脉冲高度分析器将不同能量的脉冲分开并测量。能量色散X射线荧光光谱仪可分为具有高分辨率的光谱仪,分辨率较低的便携式光谱仪,和介于两者之间的台式光谱仪。高分辨率光谱仪通常采用液氮冷却的 半导体探测器,如Si(Li)和高纯锗探测器等。低分辨便携式光谱仪常常采用正比计数器或闪烁

X射线荧光光谱仪相关特点

 X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平

X射线荧光光谱仪X射线散射的介绍

  除光电吸收外,入射光子还可与原子碰撞,在各个方向上发生散射。散射作用分为两种,即相干散射和非相干散射。  相干散射:当X射线照射到样品上时,X射线便与样品中的原子相互作用,带电的电子和原子核就跟随着X射线电磁波的周期变化的电磁场而振动。因原子核的质量比电子大得多,原子核的振动可忽略不计,主要是原

X射线荧光光谱仪X射线吸收的介绍

  当X射线穿过物质时,一方面受散射作用偏离原来的传播方向,另一方面还会经受光电吸收。光电吸收效应会产生X射线荧光和俄歇吸收,散射则包含了弹性和非弹性散射作用过程。  当一单色X射线穿过均匀物体时,其初始强度将由I0衰减至出射强度Ix,X射线的衰减符合指数衰减定律:  式中,μ为质量衰减系数;ρ为样

X射线荧光光谱仪X射线的衍射介绍

  相干散射与干涉现象相互作用的结果可产生X射线的衍射。X射线衍射与晶格排列密切相关,可用于研究物质的结构。  其中一种用已知波长λ的X射线来照射晶体样品,测量衍射线的角度与强度,从而推断样品的结构,这就是X射线衍射结构分析(XRD)。  另一种是让样品中发射出来的特征X射线照射晶面间距d已知的晶体

理学推出全反射X射线荧光光谱仪-镉元素检测有优势

  近日,日本理学宣布推出新一代理学NANOHUNTER II台式全反射X射线荧光(TXRF)光谱仪,液体或固体表面高灵敏度痕量元素分析达到ppb水平。全反射X射线荧光光谱通过一种途径使X射线入射光束刚好擦过样品,来实现低背景噪音、高灵敏度的超微量元素测量。NANOHUNTER II台式全反射X射线

X射线荧光分析技术介绍

   X射线荧光分析技术(XRF)作为常规、快速的分析手段,开始于20世纪50年代初,经历了50多年的不断发展,现在已成为物质组成分析的必备方法之一。  在我国的相关生产企业的检测、筛选和控制有害元素含量中,X射线荧光分析技术的应用气相液相色谱仪提供了一种可行的、低成本的、并且是及时的有效途径;与其

X射线荧光仪的相关介绍

  X射线荧光仪一般是采用,激发样品中的目标元素,使之产生特征X射线,通过测量特征X射线的照射量率来确定目标元素及其含量的仪器。  仪器分为室内分析、野外便携式和X射线荧光测井仪三种类型。各种类型的仪器均由探测器和操作台两部分组成。由于目前使用的探测器(正比计数管及闪烁计数器)能量分辨率不高,不能区

X射线荧光分析的相关介绍

  确定物质中微量元素的种类和含量的一种方法。它用外界辐射激发待分析样品中的原子,使原子发出标识X射线(荧光),通过测量这些标识X射线的能量和强度来确定物质中微量元素的种类和含量。根据激发源的不同,可分成带电粒子激发X荧光分析,电磁辐射激发X荧光分析和电子激发X荧光分析。

TXRF8全反射X射线荧光分析仪

  产品介绍   全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了ED

全反射X射线荧光分析仪原理及特点

   全反射X荧光光谱仪原理是基于X荧光能谱法,但与X射线能谱形成对比的是“传统能谱采用原级X光束以45°角轰击样品,而TXRF采用毫弧度的临界角。由于采用此种近于切线方向的入射角,原级X光束几乎可以全部被反射,照射在样品表面后,可以zui大程度上避免样品载体吸收光束和减小散射的发生,同时减小了载体

TXRF8全反射X射线荧光分析仪

  全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了EDXRF方法的优越

X射线荧光光谱仪的技术原理

X射线荧光光谱仪是利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X射线能谱法(能量色散)。具有重现性好,测量速度快,灵敏度高的特点。能分析F(9)~U(92)之间所有元

»-正文-TXRF8全反射X射线荧光分析仪

  产品介绍   全反射X荧光(TXRF)分析技术是近年来才发展起来的多元素同时分析技术。TXRF利用全反射技术,使样品荧光的杂散本底比X荧光能量色散谱仪(EDXRF)本底降低约四个量级,从而大大提高了能量分辨率和灵敏度,避免了XRF测量中通常遇到的本底增强或减弱效应;同时TXRF技术又继承了ED

X射线荧光的产生相关介绍

  当一束粒子如X射线光子与一种物质的原子相互作用时,在其能量大于原子某一轨道电子的结合能时,就可从中逐出一个轨道电子而出现一个“空穴”,层中的这个“空穴”可称作空位。原子要恢复到原来的稳定状态,这时处于较高能级的电子将依据一定的规则跃迁而填补该“空穴”,这一过程将使整个原子的能量降低,因此可以自发