是“谁”影响了青藏高原上的碳氮循环
2022年9月27日,中国科学院成都生物研究所陈槐研究员及其团队,应邀在《自然综述:地球与环境》(Nature Reviews Earth & Environment)发文,综述了青藏高原上的碳氮循环变化及驱动机制,指出草地可持续管理、生态工程和绿色技术发展,将抑制青藏高原温室气体排放,有助于维持青藏高原的碳汇功能。 青藏高原生态系统对水土保持、全球生物多样性保护、区域气候以及碳汇等方面有重要意义。但近年来因为气候变化和人类活动强度增加影响,青藏高原生态系统的碳氮循环中诸多过程发生变化,进而改变了其碳固定功能。青藏高原碳氮循环过程发生了怎样的改变,如何实现其可持续的固碳功能?对影响青藏高原碳氮循环的主要因子的研究刻不容缓。 青藏高原是我国重要的碳库,90%以上的碳存储在土壤当中,研究表明青藏高原土壤碳储量(地下1 m)高于480亿吨, 土壤的碳储量(地下3 m)更是高达736亿吨。当下青藏高原变暖变湿,有利于高......阅读全文
Picarro分析仪助力土壤碳氮循环研究
农业与土壤科学将土壤作为一种可控的自然资源加以检验;土壤会影响植物的生长与发展,而植物则是食品和纤维的来源。土壤性状及相关农业活动可能会影响温室气体的浓度,后者也可能会影响前者。由于土壤在氮 (N) 和碳 (C) 等循环中发挥着不可或缺的作用,因此农业与土壤科学通常会寻求测量土壤通量,即土壤与大
是“谁”影响了青藏高原上的碳氮循环
2022年9月27日,中国科学院成都生物研究所陈槐研究员及其团队,应邀在《自然综述:地球与环境》(Nature Reviews Earth & Environment)发文,综述了青藏高原上的碳氮循环变化及驱动机制,指出草地可持续管理、生态工程和绿色技术发展,将抑制青藏高原温室气体排放,有助于维
珊瑚幼虫共生关系碳氮循环研究获新进展
中国科学院南海海洋研究所珊瑚生物学和珊瑚礁生态学学科组与厦门大学、香港科技大学等合作,在国家自然科学基金联合基金项目、青年基金项目等的资助下,在珊瑚浮浪幼虫共生关系碳氮循环研究领域取得新进展。相关成果近日发表于《通讯生物学》(Communications Biology)。鹿角杯形珊瑚幼虫在环境胁迫
是“谁”影响了青藏高原上的碳氮循环
2022年9月27日,中国科学院成都生物研究所陈槐研究员及其团队,应邀在《自然综述:地球与环境》(Nature Reviews Earth & Environment)发文,综述了青藏高原上的碳氮循环变化及驱动机制,指出草地可持续管理、生态工程和绿色技术发展,将抑制青藏高原温室气体排放,有助于
青藏高原上的碳氮循环变化及驱动机制
记者27日从中科院成都生物研究所获悉,中国科学院成都生物研究所陈槐研究员与合作者综述了青藏高原上的碳氮循环变化及驱动机制,指出草地可持续管理、生态工程和绿色技术发展,将抑制青藏高原温室气体排放,有助于维持青藏高原的碳汇功能。这一科研成果于当日在国际期刊《自然综述:地球与环境》(Nature Re
垃圾填埋场甲烷氧化耦合反硝化研究破解碳氮循环过程
好氧生物反应器填埋技术是垃圾卫生填埋中最常见和最有效的技术之一。其通过渗滤液曝气回灌使填埋场成为一个复合“净化反应器”,可加速场内微生物降解有机质,去除氨氮等污染物。然而,在矿化垃圾填埋场中使用该技术,存在有机质含量低,无法彻底去除氮素的问题。并且,填埋场下层产生的甲烷,既增加“温室效应”又存在
氮循环的概念
氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。
关于氮循环的氮的相关介绍
氮(N)是天然湿地生态系统中最重要的组成成分和一种重要的生态影响因子,其主要来源有径流输入、大气沉降和生物固氮。天然湿地中N的迁移和转化主要发生在湿地演替带,演替带是生物地球化学活动比较强烈的缓冲区,常被视为湿地的N源、N汇和N转化器。演替带中N衰减主要是通过反硝化、厌氧氨氧化和湿地植被吸收等方
沼泽蚂蚁巢丘体格局对土壤碳氮循环影响研究获进展
土壤动物与生态系统过程-功能的关系是陆地表层系统研究亟须解决的关键科学问题之一。人类活动强烈干扰下,原生沼泽陆向退化演替直接导致土壤陆生无脊椎动物增多,也将进一步影响湿地原有生态过程和功能的发挥。蚂蚁是沼泽湿地中典型的“生态系统工程师”,蚂蚁巢丘体是常见的土壤生物构筑体(biogenic s
土地利用变化对土壤碳氮循环影响机制研究获进展
为了揭示土地利用变化对土壤碳氮循环的影响,中科院武汉植物园系统生态学学科组程晓莉研究员运用土壤分馏和碳氮稳定同位素方法(δ13C,δ15N)研究丹江口库区森林、灌丛和农田生态系统等不同土地利用类型对土壤有机碳氮循环的影响机制。 研究发现,近20年通过森林和灌丛的植被恢复显著增加了
水稻土碳氮循环关键酶动力学特征获新进展
在全球变暖大背景下,亚热带地区气候变化相比于其他地区更为明显。亚热带地区是水稻主产区之一,高强度的人为耕作干扰使水稻土物理化学生物特性与旱地土存在显著差异。已有研究表明水稻土是全球重要的碳汇,但升温造成温室气体(如CO2和CH4)排放增加,产生进一步的温室效应,这种正反馈作用不容忽视。 温度敏
科研人员揭示青藏高原上碳氮循环变化及驱动机制
中新网成都9月27日电 (记者 贺劭清)记者27日从中科院成都生物研究所获悉,中国科学院成都生物研究所陈槐研究员与合作者综述了青藏高原上的碳氮循环变化及驱动机制,指出草地可持续管理、生态工程和绿色技术发展,将抑制青藏高原温室气体排放,有助于维持青藏高原的碳汇功能。这一科研成果于当日在国际期刊《自然综
关于氮循环的定义介绍
氮循环是指氮在自然界中的循环转化过程,是生物圈内基本的物质循环之一,如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反复循环,以至无穷。 构成陆地生态系统氮循环的主要环节是:生物体内有机氮的合成、氨化作用、硝化作用、反硝化作用和固氮作用。 植物吸收
碳氮分析仪
碳氮分析仪是一种用于化学、物理学领域的计量仪器,于2015年03月02日启用。 技术指标 温度范围:-90至550℃ 温度准确度:±0.025℃; 温度精确度:±0.005℃; 焓值精确度:±0.04% 样品型态:固体、液体 样 品 量:1~50mg 气 氛:氮气或空气。 主要功能 测量
武汉植物园揭示红壤侵蚀区森林恢复对土壤碳氮循环的影响
侵蚀区森林恢复及重造林的问题一直以来是恢复生态学方面的热点问题,而由此带来对其土壤碳氮有机库的影响仍难以预测。森林恢复通过长期的碳储存(植被生产力)在一定程度上可以抵消碳损失,但其对土壤碳氮库带来的影响不一定是正效应。 为揭示森林恢复对土壤碳氮循环的影响,中科院武汉植物园系统生
简述氮循环的重要性
氮是植物营养的三要素之一,也是人和动物的营养物质成分,空气中的气体四分之三是氮气,但氮的存在形式多样,它们的转换和利用都很复杂。我们常见的是化学合成肥料氮,它们进入农田后,一部分与进入土壤中的动植物残体及人和动物的排泄物中的氮一起,经历由微生物驱动的各种转化过程,形成多种含氮气体。其中有些可直接
Picarro分析仪在洪水地形中的土壤碳氮循环研究中的应用
我们最受欢迎的完全集成土壤通量测量解决方案配对之一是 Picarro 的 G2000 系列分析仪与 Eosense 的eosAC通量室和eosMX多路复用器。在本应用中,我们看到了G2508温室气体分析仪如何与 Eosense 的自动室和复路系统及改进的绝缘外壳一起使用,以便在周期性淹没的田野中
陆地生态系统土壤碳氮循环对全球变化的响应研究获进展
为了揭示全球变暖对土壤碳氮循环的影响,中科院武汉植物园系统生态学学科组程晓莉研究员与美国Oklahoma大学的骆亦其教授等开展了对此项目的合作研究,运用土壤分馏(soil fractionation)和碳氮稳定同位素方法(δ13C,δ15N),研究9年控制加温对北美高草草原土壤有机
关于氮循环的基本信息介绍
氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。 氮循环是全球生物地球化学循环的重要组成部分,全球每年通过人类活动新增的“活性”氮导致全球氮循环严重失衡,并引起水体的富营养化、水体酸化、温室气体排放等一系列环境问题。
关于氮循环的氮气转化的介绍
有三种将游离态的N2(大气中的氮气)转化为化合态氮的方法: 生物固氮:是指固氮微生物将大气中的氮气转换成氨的过程 [1] ,一些共生细菌(主要与豆科植物共生)和一些非共生细菌能进行固氮作用并以有机氮的形式吸收。 工业固氮:在哈伯-博施法中,N2与氢气被化合生成氨(NH3)肥。 化石燃料燃烧
氮循环的硝化作用介绍
产生的氨,一部分被微生物固持及植物吸收,或者被粘土矿物质固定;另一部分通过自养硝化或异养硝化转变成硝酸盐,这一过程被称为硝化作用。 氨来源于腐生生物对死亡动植物器官的分解,被用作制造铵离子(NH4+)。在富含氧气的土壤中,这些离子将会首先被亚硝化细菌转化为亚硝酸根离子(NO2-),然后被硝化细
碳硫氧氮氢分析技术
用热导测CSONH,是否使用不同的热敏电阻?CH4能测吗?首先,热导法通常用于检测N2、H2等这类的双原子分子的气体。C、S、O加热后以CO、CO2、SO2的形式释放,所以不能用热导法检测,一般用非分散红外吸收的方法检测。其次,涉及热导检测器的敏感元件热敏电阻,在材料和结构上不同的厂家会有所不同,但
碳氮晶体的溶剂热制备
以无水C3N3Cl3和Li3N的苯溶液作为初始原料,在压力为5-6 MPa,温度为350℃条件下,利用溶剂热的合成方法成功地制备出了碳氮晶体.X射线粉末衍射(XRD)确定出样品中主要晶相成分为α-C3N4及β-C3N4,品格常数分别为a=0.650 nm,c=0.470 nm(α-C3N4);a:0
A/O内循环生物脱氮工艺特点
(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。(2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲
湿地岸边氮循环反应的研究进展
湿地岸边带作为连接内陆水体与陆地生态系统的交界面,不仅是氮循环反应的“热区”,亦是温室气体——氧化亚氮的高释放区。前期大量研究表明湿地岸边带系统能够有效拦截陆源污染和净化水体,但其微观机理仍不清楚。 中国科学院生态环境研究中心祝贵兵研究组通过构建针对各氮循环反应微生物功能基因的高通量测序分析、
高碳产业低碳转型新方案:气—渣协同循环体系
5月28日,山西大学资源与环境工程研究所教授程芳琴团队与清华大学环境学院教授鲁玺联合在《自然—可持续性》(Nature Sustainability)期刊发表了最新研究成果。该成果构建了“尾气—熔渣协同循环体系”,并提出分阶段脱碳技术路线图,系统研究了焦炉煤气—废渣协同减碳效益,阐明当前产业布局
沈阳生态所在氮沉降对氮磷循环影响方面取得新进展
日益加剧的人类活动极大地改变了氮素的生物地球化学循环,氮沉降和活性氮的增加对生态系统的结构和功能造成严重的影响。大量的研究关注了氮素可利用性的变化对生物多样性和群落组成的影响,而对氮素可利用性变化影响下的氮、磷两种元素在生物地球化学循环中的耦合作用关注甚少,更少有研究关注氮沉降对两种元素在植物体
氮循环微生物作用机制研究获突破
华东师范大学刘敏团队首次从微生物基因水平上揭示了纳米银对水环境氮循环的毒性效应与作用机理,发现环境中广泛存在的纳米银可通过调控功能微生物的氮代谢过程,降低氮转化效率,促进温室气体氧化亚氮的产生与排放,从而加剧水体富营养化和温室效应等环境问题。近日,相关研究成果发表于《科学进展》。 随着纳米
新研究揭示地质背景影响全球河流氮循环
近日,香港科技大学(广州)教授刘易团队首次揭示了碳酸盐岩风化通过调控溶解无机碳增强河流氮同化吸收的作用机制。这一发现不仅加深了地质背景对河流碳氮耦合循环和其他生物地球化学过程的控制作用的理解,更为全球河流生态治理和碳中和目标提供了全新视角。相关成果发表于《自然-地球科学》。珠江流域地质背景与溶解无机
红外碳硫分析仪针对钒氮合金的碳硫检测
陕西华银科技股份有限公司引进了南京麒麟仪器集团一套红外碳硫分析仪,红外碳硫分析仪主要针对钒氮合金材质检测,下旬公司技术人员到客户现场免费安装调试培训,现场技术沟通培训化验操作人员,红外碳硫分析仪现场对钒氮合金的碳硫检测,检测结果数据达到钒氮合金国家标准,得到该公司邱主任认可,根据该公司的发展近期