关于内含肽的结构介绍
被人们公认的标准内含肽的结构模体为:N端剪接区+中部归巢核酸内切酶区域+ C剪接区域 。两端剪接区参与蛋白质的剪接,中部区域参与蛋白质归巢过程,少数内含肽不含核酸内切酶区域。全功能型内含肽包括8个保守区或基序,一般由244~1650个氨基酸碱基组成,大部分在500个氨基酸残基左右。自导引归巢核酸内切酶将剪接功能区分为含有A和B保守区的N端和含有G和F的C端功能区。从N端开始到C端依次为A、B、C、D、E、H、F、G,其中C、D、E、H属于自导引归巢核酸内切酶家族。微型内含肽均带有A、B、F、G保守区,一般由128~1309个氨基酸残基组成,大部分为160个左右氨基酸残基自导引归巢核酸内切酶(Homing endonuclease)活性在识别序列和功能上与核酸内含子(Intron)的自导引归巢核酸内切酶类似,具有位点特异性,可以在无Intein等位基因的双链DNA位点定点切割,引起Intein的插入。N端和C端的序列高度保守;......阅读全文
关于内含肽的结构介绍
被人们公认的标准内含肽的结构模体为:N端剪接区+中部归巢核酸内切酶区域+ C剪接区域 。两端剪接区参与蛋白质的剪接,中部区域参与蛋白质归巢过程,少数内含肽不含核酸内切酶区域。全功能型内含肽包括8个保守区或基序,一般由244~1650个氨基酸碱基组成,大部分在500个氨基酸残基左右。自导引归巢核酸
内含肽的结构
被人们公认的标准内含肽的结构模体为:N端剪接区+中部归巢核酸内切酶区域+ C剪接区域 。两端剪接区参与蛋白质的剪接,中部区域参与蛋白质归巢过程,少数内含肽不含核酸内切酶区域。全功能型内含肽包括8个保守区或基序,一般由244~1650个氨基酸碱基组成,大部分在500个氨基酸残基左右。自导引归巢核酸内切
关于内含肽的种类介绍
从内含肽的内部有无自导引归巢核酸内切酶结构域,可将内含肽分为2种类型。一种是全功能型内含肽(maxi—intein),具有蛋白剪接活性和自导引核酸内切酶序列(homingendonuclease);另一种是微型内含肽(mini—intein),只有蛋白剪接活性。其中自导引归巢核酸内切酶结构域的缺
关于内含肽的应用介绍
内含肽序列加上C端外显肽的第一个氨基酸残基包含了蛋白剪接的全部信息,甚至可以介导非“原配”的外源蛋白质的剪接。内含肽与上游和下游的外显肽序列之间几乎没有同源性,所以,如果外源目的蛋白替换天然外显肽,内含肽仍然可以保持剪接活性。但是利用好这一特点对蛋白质人工剪接需要考虑一些影响因素:外源蛋白及剪接
关于内含肽的基本信息介绍
内含肽intein是位于宿主蛋白质中的一段插入序列,前缀in一取自inventing, 后缀tein一取自protein。与内含肽相对应的另一专用术语是外显肽。内含肽基因不是一个独立的基因, 必须插入于外显肽基因才能复制转录,可从前体蛋白中切除并将两侧外显肽连接起来成为成熟蛋白质。其对应的核苷酸
内含肽的应用介绍
内含肽序列加上C端外显肽的第一个氨基酸残基包含了蛋白剪接的全部信息,甚至可以介导非“原配”的外源蛋白质的剪接。内含肽与上游和下游的外显肽序列之间几乎没有同源性,所以,如果外源目的蛋白替换天然外显肽,内含肽仍然可以保持剪接活性。但是利用好这一特点对蛋白质人工剪接需要考虑一些影响因素:外源蛋白及剪接位点
内含肽
内含肽intein是位于宿主蛋白质中的一段插入序列,前缀in一取自inventing, 后缀tein一取自protein。与内含肽相对应的另一专用术语是外显肽。内含肽基因不是一个独立的基因, 必须插入于外显肽基因才能复制转录,可从前体蛋白中切除并将两侧外显肽连接起来成为成熟蛋白质。其对应的核苷酸序列
关于内含肽介导的蛋白连接的介绍
通过改变裂解条件以及对内含肽进行适当修饰,可以生物合成c端带有硫酯键或N端带有半光氨酸的蛋白质分子。两种蛋白质混合以后,硫酯键和半光氨酸利用“自然化学连接”(native chemical ligation)的原理进行自发的连接反应,在硫酯和半光氨酸之间形成肽键,从而将两种蛋白质连接起来。自然化
内含肽的种类
从内含肽的内部有无自导引归巢核酸内切酶结构域,可将内含肽分为2种类型。一种是全功能型内含肽(maxi—intein),具有蛋白剪接活性和自导引核酸内切酶序列(homingendonuclease);另一种是微型内含肽(mini—intein),只有蛋白剪接活性。其中自导引归巢核酸内切酶结构域的缺失在
内含肽的基本信息介绍
生物体本身就是一个神秘而精密地高效运作的机器。大到各系统之间,小到每个细胞,无一不展示着生命的神奇,他们之间的配合是那样的天衣无缝。继内含子的自我剪接功能发现之后,第一个内含肽——命名为Sce VMA1 发现了,它的发现使内含肽陆续在各种生物中发现,它们在单细胞真核生物、真细菌、古细菌、噬菌体和
概述内含肽的分离纯化的介绍
内含肽具自切割特性的这种特性而实现目标蛋白与亲和标签分离的目的。内含肽在蛋白质纯化中的应用修饰后(位点特异性突变)的内含肽经诱导能够介导N端或C端单侧肽键断裂。首先将编码亲和标签、内含肽及目标蛋白的基因序列连接在一起,在合适的宿主系统中表达出一个标签-内含肽-目标蛋白的三联体,利用修饰后的内含肽
内含肽的应用内含肽可作为治疗线粒体疾病药物靶标
内含肽可作为治疗线粒体疾病药物靶标粒体DNA(mtDNA)突变,将导致mtDNA编码、与氧化磷酸化有关的13种蛋白质的突变,从而起很多罕见的疾病,这也可能是人类衰老的原因之一。由于该13种蛋白质高度的疏水性,通过转基编码表达的有生物活性的蛋白质很难从细胞质中进入线粒体。根据内含肽的作用机制,首先在胞
内含肽的作用机制
内含肽剪接是一个快速、高效的反应过程,前体蛋白在细胞中几乎分离不到。反应亦不需要任何辅助因子、酶和ATP能量,其催化结果是将内含肽两侧的外显肽通过肽键连接成成熟的天然肽。基于剪接位点氨基酸残基的化学性质以及带分支的剪接中间产物分子的发现,人们提出了多种假说来描述这一反应过程。目前被普遍接受的剪接机制
内含肽的分离纯化
内含肽具自切割特性的这种特性而实现目标蛋白与亲和标签分离的目的。内含肽在蛋白质纯化中的应用修饰后(位点特异性突变)的内含肽经诱导能够介导N端或C端单侧肽键断裂。首先将编码亲和标签、内含肽及目标蛋白的基因序列连接在一起,在合适的宿主系统中表达出一个标签-内含肽-目标蛋白的三联体,利用修饰后的内含肽构建
内含肽的应用内含肽可作为抗结核分支杆菌药物靶标
由于肺结核的复发率高,且病菌对抗生素耐药具有适应性,针对结核分支杆菌(Mycobacteriumtuerculosis)的快速而独特的诊断工具就显得非常需要。分支杆菌是通过内含肽的作用影响人类的相关病,如结核、麻风病。在肺结核的发生中,DNA编码RecA和DnaB这两个蛋白质起重要作用,RecA和D
概述内含肽的作用机制
内含肽剪接是一个快速、高效的反应过程,前体蛋白在细胞中几乎分离不到。反应亦不需要任何辅助因子、酶和ATP能量,其催化结果是将内含肽两侧的外显肽通过肽键连接成成熟的天然肽。基于剪接位点氨基酸残基的化学性质以及带分支的剪接中间产物分子的发现,人们提出了多种假说来描述这一反应过程。目前被普遍接受的剪接
内含肽介导的蛋白连接
通过改变裂解条件以及对内含肽进行适当修饰,可以生物合成c端带有硫酯键或N端带有半光氨酸的蛋白质分子。两种蛋白质混合以后,硫酯键和半光氨酸利用“自然化学连接”(native chemical ligation)的原理进行自发的连接反应,在硫酯和半光氨酸之间形成肽键,从而将两种蛋白质连接起来。自然化学连
关于信号肽的结构介绍
信号肽位于分泌蛋白的N端。一般由15~30个氨基酸组成。包括三个区:一个带正电的N末端,称为碱性氨基末端;一个中间疏水序列。以中性氨基酸为主,能够形成一段α螺旋结构,它是信号肽的主要功能区;一个较长的带负电荷的C末端,含小分子氨基酸,是信号序列切割位点,也称加工区。当信号肽序列合成后,被信号识别
关于信号肽的结构相关介绍
信号肽位于分泌蛋白的N端。一般由15~30个氨基酸组成。包括三个区:一个带正电的N末端,称为碱性氨基末端:一个中间疏水序列.以中性氨基酸为主,能够形成一段d螺旋结构,它是信号肽的主要功能区;一个较长的带负电荷的C末端,含小分子氨基酸,是信号序列切割位点.也称加工区。当信号肽序列合成后,被信号识别
关于放线菌的结构细胞质及内含物介绍
放线菌是单细胞丝状体,菌丝中无横隔,整个细胞质都是贯通的。细胞质主要是有蛋白质、核酸、糖类、脂类、无机盐和大量的水所组成的半透明的胶状物,其中水的含量为60%~80%,尤其是基内菌丝的含水量更高。最重要的颗粒状内含物是核糖体,此外还有多聚磷酸盐、类脂及多糖等内含物。放线菌细胞质中的糖和其他细胞壁
内含肽剪接调控以作为药物“开关”
含肽作为药物靶标的研究于内含肽这种可调控的作用机制,Bonnanl51为,通过改变剪接结构域上、下游的序列,自主设蛋白质内含肽,可以调控蛋白质的剪接。因为包含内含肽的前体蛋白无活性的,所以那些能阻断剪接的化学物质将具有重要的药用价值。由于目前在动物和人体正常新陈代谢中没有发现内含肽的报道,作为药
关于内含子的起源介绍
内含子起源有两种假说。 1.内含子与它所在的基因一样古老,在装配第一个这样的基因时,内含子就已存在。早期的内含子具有自催化、自我复制等能力,因此,它们是原始基因和基因组的组织与复制必不可少的部分。而原核生物和少数低等的真核生物,由于它们需要进行快速的DNA复制从而进行快速的细胞分裂,因而失去了
关于内含子的定义介绍
内含子(Intron)又称间隔顺序,指一个基因或mRNA分子中无编码作用的片段 [1] 。是真核生物细胞DNA中的间插序列。这些序列被转录在前体RNA中,经过剪接被去除,最终不存在于成熟RNA分子中。内含子和外显子的交替排列构成了割裂基因。在前体RNA中的内含子常被称作“间插序列”。在转录后的加
关于内含子的特点介绍
内含子(introns)在转录后的加工中, 从最初的转录产物除去的内部的核苷酸序列。术语内含子也指编码相应RNA内含子的DNA中的区域。 大多数真核结构基因中的间插序列(intervening sequence)或不编码序列。它们可以转录,但在基因转录后,由这些间插序列转录的部分(也可用内含子
关于内含子归巢的第Ⅱ类内含子介绍
在第Ⅱ类内含子中大部分开放读框都具有一个与反转录转座子相关的区域(除核酸内切酶编码区之外)。这种类型的内含子在低等真核生物和某些细菌中都有发现。反转录酶对于内含子来说是特异的,而且和归巢有关。反转录酶以初始mRNA为模板合成内含子的DNA拷贝,通过采用与反转录病毒相似的机制使内含子插入到靶位点中
内含肽的应用剪接调控以作为药物“开关”
含肽作为药物靶标的研究于内含肽这种可调控的作用机制,Bonnanl51为,通过改变剪接结构域上、下游的序列,自主设蛋白质内含肽,可以调控蛋白质的剪接。因为包含内含肽的前体蛋白无活性的,所以那些能阻断剪接的化学物质将具有重要的药用价值。由于目前在动物和人体正常新陈代谢中没有发现内含肽的报道,作为药靶标
内含肽可作为治疗线粒体疾病药物靶标
粒体DNA(mtDNA)突变,将导致mtDNA编码、与氧化磷酸化有关的13种蛋白质的突变,从而起很多罕见的疾病,这也可能是人类衰老的原因之一。由于该13种蛋白质高度的疏水性,通过转基编码表达的有生物活性的蛋白质很难从细胞质中进入线粒体。根据内含肽的作用机制,首先在胞质合成线粒体目标蛋白前体片段序
关于降血压肽的结构与活性的关系介绍
高活性的降血压肽都有类似的分子结构与氨基酸组成,根据降血压肽的结构与活性的关系,可将其对血管紧张素转化酶(ACE)的抑制作用分为3种抑制模型。 [2] 1、降血压肽C-端竞争性抑制作用 1977年Cushman实验室提出降血压肽以C-端为主的作用模型:底物的C-端倒数第三个如为芳香族氨基酸,
关于内含子归巢的第I组类内含子介绍
第I组内含子具有编码核酸内切酶的开放续框;有时成熟酶的活性和此蛋白有关。第II类内含子具有编码核酸内切酶和反转录酶式的序列,另外成熟酶的活性也与此蛋白有关。在有些情况下还具有与其它酶活性相关联的成熟酶功能的遗传信息,成熟酶主要功能是使内含子的构象稳定,这于剪接来说是很必要的。 现已知道有些
关于内含子的基本信息介绍
断裂基因的非编码序列,在mRNA加工过程中被剪切掉,故成熟mRNA上无内含子编码序列。内含子可能含有“旧码”,就是在进化过程中丧失功能的基因部分。正因为内含子对翻译产物的结构无意义,不受自然选择的压力,所以它比外显子累积有更多的突变。