关于RNA剪接的简介
大多数脊椎动物基因的编码序列,无论是编码多肽的基因还是编码除mRNA以外的RNA分子的基因,都是由非编码的间隔序列(内含子)分隔为各个外显子部分。这些基因的外显子和内含子都转录在一条初级RNA转录分子中,接下来,此初级RNA转录分子要经过RNA剪接,此过程包括一系列的加工反应:RNA的内含子部分被切开并去除,外显子RNA部分端对端重新拼接,形成一条短一些的RNA产物。因此RNA剪接是将初级转录物中的内含子序列切掉并将外显子序列拼接起来。......阅读全文
关于RNA剪接的简介
大多数脊椎动物基因的编码序列,无论是编码多肽的基因还是编码除mRNA以外的RNA分子的基因,都是由非编码的间隔序列(内含子)分隔为各个外显子部分。这些基因的外显子和内含子都转录在一条初级RNA转录分子中,接下来,此初级RNA转录分子要经过RNA剪接,此过程包括一系列的加工反应:RNA的内含子部分
关于RNA剪接的基本介绍
RNA剪接 (RNA splicing)是指从DNA模板链转录出的最初转录产物中除去内含子,并将外显子连接起来形成一个连续的RNA分子的过程。RNA剪接机制的研究,是80年代生物化学和分子生物学领域中最有生机的研究课题之一,它不仅解决不连续基因转录产物的剪接问题,而且对于了解不连续基因的起源乃至
关于RNA剪接的定义介绍
RNA剪接是真核细胞基因表达中非常重要的一个生物过程,通过RNA剪接,可以产生许多具有功能的,带有编码信息的mRNA,它对生物的发育及进化至关重要。所以RNA剪接识别是正确理解基因表达过程的重要一步,而剪接的识别的关键是依赖于剪接位点的判定。真核细胞pre-mRNA的剪接位点处存在一定的序列保守
RNA-剪接
中文名称RNA 剪接英文名称RNA splicing定 义在真核细胞核中从RNA初始转录物切除内含子,连接外显子形成成熟的mRNA的过程。应用学科细胞生物学(一级学科),细胞遗传(二级学科)
关于RNA剪接第Ⅱ类内含子的自我剪接介绍
第Ⅱ类内含子,其5’剪接点和3’剪接点的序列多为…外显子…↓GUGCG…内含子…嘧啶碱AU↓…外显子…,除了剪接点序列特征之外,在离3’剪接点上游6-12bp有一段比较保守的序列,一致序列为CUCAC,在这一保守序列A的两侧各有一段3~5核苷酸的短序列能与上游方向的核苷酸互补,而A总是不包含在这
关于基因剪接的简介
基因组中或基因组间发生遗传信息的重新组合,被称为DNA重组(DNA recombination),其中发生在基因组中的DNA重组又称DNA重排。包括同源重组、特异位点重组和转座重组等类型,广泛存在于各类生物。体外通过人工DNA重组可获得重组体DNA,是基因工程中的关键步骤。
概述RNA剪接的类型
RNA剪接及其机制的研究,不仅解决了不连续基因“连续”转录产物的问题,而且对于了解不连续基因的起源乃至整个生命起源与进化等问题,均产生极大的推动作用,另外,由此发现了核酸分子的催化功能,进一步拓宽了对于酶的认识。不连续基因中的介入序列称为内含子;被内含子隔开的基因序列称为外显子(exon)。一个
RNA剪接为什么会出错
“这项研究不仅提出了用小分子药物治疗维斯科特-奥尔德里奇综合征的新目标,而且为RNA剪切的基础生物学提供了新的线索,这是一个重要的但尚未完全被理解的过程,”共同通信作者Juan Carlos Izpisua Belmonte说,他是Salk基因表达实验室的教授和Roger Guillemin主席。患
RNA剪接和基因沉默之间的联系
为了识别在RNA干涉(RNAi)和微RNA介导的基因表达调控中所涉及的因素,Gary Ruvkun及其同事对86种真核生物进行了系统发生分析,所得到的候选物再用转录和蛋白组相互作用数据进行Bayesian分析,来估计它们参与小RNA调控的概率。所识别出的小RNA辅因子中大约一半是RNAi沉默所必需的
RNA剪接和基因沉默之间的联系
为了识别在RNA干涉(RNAi)和微RNA介导的基因表达调控中所涉及的因素,Gary Ruvkun及其同事对86种真核生物进行了系统发生分析,所得到的候选物再用转录和蛋白组相互作用数据进行Bayesian分析,来估计它们参与小RNA调控的概率。所识别出的小RNA辅因子中大约一半是RNAi沉默所必需的
RNA剪接和基因沉默之间的联系
为了识别在RNA干涉(RNAi)和微RNA介导的基因表达调控中所涉及的因素,Gary Ruvkun及其同事对86种真核生物进行了系统发生分析,所得到的候选物再用转录和蛋白组相互作用数据进行Bayesian分析,来估计它们参与小RNA调控的概率。所识别出的小RNA辅因子中大约一半是RNAi沉默所必需的
关于RNA沉默的简介
基因沉默是指在真核生物(植物、动物、真菌)中保守的由双链RNA诱导的鉴定和破坏其细胞质中异常变异或过表达的RNA的一种机制。 RNA 沉默(RNA silencing)或基因沉默(gene silencing)是广泛存在于植物、动物、线虫和真菌等真核生中的一种高度保守的、序列特异的 RNA 降
关于卫星RNA的简介
卫星RNA是一类小的非编码RNA,基因组大小为200-1500nt,通常不编码蛋白,完全依赖于辅助病毒来完成复制、包被、移动和传播,且和其辅助病毒的基因组不存在序列同源性。部分卫星RNA可以影响辅助病毒在寄主植物上诱发的症状,多数为减轻,少数会加重寄主症状。传统理论认为卫星RNA是通过与辅助病毒
关于转运RNA的简介
转运RNA(Transfer RNA),又称传送核糖核酸、转移核糖核酸,通常简称为tRNA,是一种由76-90个核苷酸所组成的RNA,其3'端可以在氨酰-tRNA合成酶催化之下,接附特定种类的氨基酸。转译的过程中,tRNA可借由自身的反密码子识别mRNA上的密码子,将该密码子对应的氨基酸
关于RNA复制的简介
RNA复制是以RNA为模板合成RNA的过程,是除了逆转录病毒以外的其他RNA病毒的复制方式。有些生物,像某些病毒的遗传信息贮存在RNA分子中,当它们进入宿主细胞后,靠复制而传代,当它们以RNA模板时,在RNA复制酶作用下,按5'→3'方向合成互补的RNA分子,但RNA复制酶中缺乏
Nature:针对RNA转录和剪接的新观点!
细胞通常产生区室来控制重要的生物功能。细胞核就是一个很好的例子;它被核膜包围着,容纳着基因组。然而,细胞还含有未被膜包围的较为短暂存在的封闭室,就像水中的油滴。在过去两年中,这些称为液滴状“凝聚物(condensates)”的封闭室已越来越多地被认为是控制基因的主要参与者。如今,在一项新的研究中
PNAS:RNA剪接调控研究方面新的进展
近日,PNAS在线发表了中科院上海生科院营养科学研究所冯英研究组的最新研究进展。该研究揭示了RNA二级结构在剪接调控中的新机制,并首次证明了MYC调控蛋白FUBP1同样具有剪接调控活性。 RNA剪接是连接转录与翻译的重要桥梁,也是生物体蛋白质多样性的重要保证。在真核生物中,mRNA前体被剪
简述RNA剪接和基因沉默之间的联系
为了识别在RNA干涉(RNAi)和微RNA介导的基因表达调控中所涉及的因素,Gary Ruvkun及其同事对86种真核生物进行了系统发生分析,所得到的候选物再用转录和蛋白组相互作用数据进行Bayesian分析,来估计它们参与小RNA调控的概率。所识别出的小RNA辅因子中大约一半是RNAi沉默所必
环形RNA可变反向剪接和可变剪接表达图谱被系统绘制
6月30日,国际学术期刊Genome Research 在线发表了中国科学院上海生命科学研究院计算生物学研究所杨力研究组和生物化学与细胞生物学研究所陈玲玲研究组关于环形RNA研究的最新进展:Diverse alternative back-splicing and alternative spl
关于丙型肝炎RNA的简介
丙型肝炎病毒(hepatitis virus C,HCV)是一小的有囊膜的单股正链RNA病毒,属黄病毒科丙型肝炎病毒属。HCV基因组为一长的开放读码框架(ORF),在其两侧的5′和3′均有非编码区,从5′端开始,编码区由7个基因区组成,即C、E1、E2、NS1、NS2,NS3、NS4和NS5,C
关于小干扰RNA的简介
小干扰RNA(siRNA),有时称为短干扰RNA或沉默RNA,是一类双链RNA分子,长度为20-25个碱基对,类似于miRNA,并且在RNA干扰(RNAi)途径内操作。它干扰了表达与互补的核苷酸序列的特定基因的转录后降解的mRNA,从而防止翻译。 siRNA由双链RNA (double str
上海生科院揭示反向剪接RNA成环与RNA转录的偶联机制
4月19日,国际学术期刊Cell Reports 发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所陈玲玲研究组与计算生物学研究所杨力研究组最新合作研究论文。此工作深入研究了环形RNA生成与RNA转录的偶联机制,揭示了环形RNA在神经分化过程中表达上调原理。 环形RNA是一类通过反向
关于第Ⅲ类内含子的剪接hnRNA的剪接的介绍
核基因hnRNA内含子的剪接点序列为…外显子…↓GU…内含子…AG↓…外显子…,这就是普遍适用的所谓Breathnach-Chambon规则(GU-AG规则)(GU-AG rule),此规律不适合于线粒体和叶绿体的内含子,也不适合于tRNA和某些编码rRNA的核结构基因,酵母的分支位点序列是高度
METTL16介导通过阻碍对剪接位点的识别从而抑制RNA剪接
RNA m6A修饰是目前RNA表观遗传领域研究的热点,对于m6A的甲基化酶和去甲基化酶,相信大家也是耳熟能详。事实上,大名鼎鼎的METTL3仅能结合约22%的m6A位点,这提示还有其他m6A甲基化酶。确实,在METTL3之后,METTL16也被鉴定为m6A甲基化酶,但是它的底物远不如METTL3
关于基因剪接的意义介绍
①参与DNA复制。 ②参与DNA修复。 ③参与基因表达调控。 ④在真核细胞分裂时促进染色体正确分离。 ⑤维持遗传多样性。 ⑥在胚胎发育过程中实现程序性基因重排 。
关于基因剪接的基本介绍
基因剪接是通过一些酶学操作使一条DNA分子与另一条DNA分子相连。即在mRNA成熟期,切除基因的内含子,连接基因的外显子的过程,称为基因剪接。而天然基因的某些片段被合成的DNA链所取代或连成整体的过程称为基因剪辑。一个基因为它的等位基因所替换,而其他基因则保持不变称为基因置换。
关于可变剪接的基本介绍
可变剪接(alternative splicing)是指在同一个mRNA前体内部数个外显子之间产生的差异性连接。这种剪接可以使同一个基因在不同的发育阶段、不同分化状态甚至不同生理状态下,得到多个相似但有差异的mRNA,进而被翻译为氨基酸序列相近似、性质和功能有差异的蛋白质。高度通用性的剪接位点G
Cell-Systems:构建RNA结合蛋白的剪接调控作用预测模型
基因组研究结果显示,人体内超过90%的基因存在选择性剪接(alternative splicing)。该过程在不同组织以及不同生理阶段受到严格的调控,其失调会导致多种疾病的发生。选择性剪接的体内调控主要由前体mRNA中的顺式元件(cis-elements) 招募反式剪接作用因子(trans-a
营养所在RNA剪接调控研究中取得新进展
近日,PNAS在线发表了中科院上海生科院营养科学研究所冯英研究组的最新研究进展:Far upstream element-binding protein 1 and RNA secondary structure both mediate second-step splicing rep
关于基因剪接的历史发现介绍
1972年,加州大学旧金山分校的微生物学家赫伯特·伯耶(Herbert Boyer)、斯坦福大学的研究员史坦利·科恩(Stanley Cohen)在火奴鲁鲁参加学术会议时在一家现成食品店里遇到了对方。他们一边吃着熏牛肉三明治,一边构思除了一个开创了现代生物技术产业的实验。回到加州后,这两个人成功