关于神经细胞黏附分子的功能介绍
1、在肿瘤中的作用 NCAM在结构上与肿瘤控制因子DCC的结构很相似,故有人推测NCAM在肿瘤抑制方面可能有一定的作用。 细胞的粘附和嗜同性: 通过体外培养单个分离的鸡视网膜细胞发现:NCAM可以诱导细胞聚合,而细胞的聚合能够被NCAM的抗体的Fab片段所抑制,重新加入纯化的NCAM后,抑制作用又被中和。 2、神经再生 NCAM对神经生长的刺激作用是有一定界点的,当NCAM达到或超过某一界点时,它对神经生长的刺激作用显著增长。 3、受体的作用 NCAM是狂犬病毒又一受体,它可传导狂犬病毒所携带的信息而产生一系列反应。 4、学习和记忆 学习和记忆是一个信息长期储存的过程,其具体机制尚未明了,民众普遍接受的是突触连接的加强对信息的储存有利。其中海马、纹状体一直被认为是与学习和记忆有关的重要功能区。 将鸡接受被动逃避反应训练,5-6 小时后发现鸡纹状体突触部位NCAM; 含量增加,经脑室注入抗NCAM抗体组的鸡......阅读全文
关于分子蒸馏的过程介绍
短程蒸馏器还适合于进行分子蒸馏。分子流从加热面直接到冷凝器表面。分子蒸馏过程可发如下四步: 分子从液相主体向蒸发表面扩散 通常,液相中的扩散速度是控制分子蒸馏速度的主要因素,所以应尽量减薄液层厚度及强化液层的流动。 分子在液层表面上的自由蒸发 蒸发速度随着温度的升高而上升,但分离因素有时
关于分子伴侣的概念介绍
分子伴侣是细胞中一大类蛋白质,是由不相关的蛋白质组成的一个家系,它们介导其它蛋白质的正确装配,但自己不成为最后功能结构中的组分。分子伴侣的概念有三个特点: ①凡具有这种功能的蛋白,都称为分子伴侣,尽管是完全不同的蛋白质; ②作用机理是不清楚的,故用了“介导”二字,以含糊其辞,“帮助”二字可理
细胞黏附和迁移
Cell Adherence Assay (LTI)General and nice Protocol for cell adherence assay. Proteins are coated on microtiter plates and cells are added; after the
主要分子对接软件功能特点介绍
DOCKDock是应用最广泛的分子对接软件之一,由Kuntz课题组开发。Dock应用半柔性对接方法,固定小分子的键长和键角,将小分子配体拆分成若干刚性片断,根据受体表面的几何性质,将小分子的刚性片断重新组合,进行构像搜索。在能量计算方面,Dock考虑了静电相互作用、范德华力等非键相互作用,在进行构像
关于成神经细胞瘤的化疗和放疗治疗介绍
1、化疗 化疗为Ⅲ、Ⅳ期肿瘤主要治疗方法,亦可用于大肿瘤的手术前准备、肿瘤术后残留及转移的病变。目前多采用联合治疗方案,常用的药物有长春新碱(VCR),环磷酰胺(CTX)、阿霉素(ADR)和顺铂(CDDP)等。联合方案如VCR+ADR+CDDP,CTX+ADR等,总的有效反应率达50%~90%
关于神经细胞间的化学突触的简介
存在于可兴奋细胞之间的细胞连接方式,它通过释放神经递质来传导神经冲动。 化学突触(synapse)是存在于可兴奋细胞间的一种连接方式,其作用是通过释放神经递质来传导兴奋。由突触前膜(presynaptic membrane)、突触后膜(postsynaptic membrane)和突触间隙(s
MHC分子的功能
MHC最初是在研究排斥反应的过程中发现的。MHC分子作为代表个体特异性的主要组织抗原,在排斥反应中起重要作用。自从60年代发现了Ir基因,70年代发现了细胞毒性T细胞与靶细胞间相互作用的MHC限制性后,对MHC的生物学作用有了更深入的认识。MHC的主要功能包括: 一、参与对抗原处理 MHC分
准分子激光器的功能介绍
准分子激光器,以准分子为工作物质的一类气体激光器件。常用相对论电子束(能量大于200千电子伏特)或横向快速脉冲放电来实现激励。当受激态准分子的不稳定分子键断裂而离解成基态原子时,受激态的能量以激光辐射的形式放出。
亲水性和亲脂性信号分子的功能介绍
根据信号分子的溶解性可分为亲水性和亲脂性两类。亲水性信号分子的主要代表是神经递质、含氮类激素(除甲状腺激素)、局部介质等,它们不能穿过靶细胞膜,只能通过与细胞表面受体结合,再经信号转换机制,在细胞内产生“第二信使”(如cAMP)或激活膜受体的激酶活性(如蛋白激酶),跨膜传递信息,以启动一系列反应而产
J-Neurosci:揭示神经细胞定位声音信号来源的分子机制
图中所示为脑干中的神经元 近日,来自慕尼黑大学等处的研究人员通过研究揭示了神经细胞适应声信号的分子机制,研究者发现神经元可以依赖输入信号在细胞附近或者远处产生动作电位,这种产生动作电位的灵活性可改善其对声音来源进行定位的能力,相关研究成果刊登于国际杂志The Journal of Ne
关于分子光谱的作用介绍
分子光谱是提供分子内部信息的主要途径,根据分子光谱可以确定分子的转动惯量、分子的键长和键强度以及分子离解能等许多性质,从而可推测分子的结构。 分子的内部运动状态发生变化所产生的吸收或发射光谱(从紫外到远红外直至微波谱)。分子运动包括整个分子的转动,分子中原子在平衡位置的振动以及分子内电子的运动
关于分子光谱的基本介绍
分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从紫外到远红外直至微波谱)。分子光谱与分子绕轴的转动、分子中原子在平衡位置的振动和分子内电子的跃迁相对应。
关于分子排阻色谱的介绍
SEC 是利用多肽分子大小、形状差异来分离纯化多肽物质,特别对一些较大的聚集态的分子更为方便,如人重组生长激素(hgH)的分离,不同结构、构型的GH 在SEC 柱上分离行为完全不同,从而可分离不同构型或在氨基酸序列上有微小差异的变异体,利用SEC 研究修饰化的PEG 的分离方法,此PEC 具有半
关于低分子增稠剂的基本介绍
(1)无机盐类增稠剂 用无机盐(如氯化钠、氯化钾、氯化铵、单乙醇胺氯化物、二乙醇胺氯化物、硫酸钠、磷酸钠、磷酸二钠和三磷酸五钠等)做增稠剂的体系,一般是表面活性剂水溶液体系,最常用的无机盐增稠剂是氯化钠,增稠效果明显。 (2)脂肪醇、脂肪酸类增稠剂 脂肪醇、脂肪酸(如月桂醇、肉豆蔻醇、癸醇
关于质膜的分子结构介绍
一、单位膜模型(unitmembranemodel) 1959年,J.D.Robertson利用电子显微镜技术对各种膜结构进行了详细研究,在电子显微镜下发现细胞膜是类似铁轨结构(“railroadtrack”),两条暗线被一条明亮的带隔开.显示暗——明——暗的三层,总厚度为7.5nm,中间层为
关于低分子肝素的特点介绍
1.由于分子量小,组分相对均一,皮下注射吸收比肝素快而规则,药动学特征更具可预见性,生物利用度90%,t1/2长于肝素,约4小时; 2.由于分子量小,与ATⅢ形成复合物后,与Xa结合选择性高,因而选择性抑制Xa活性(一分子Xa可催化大约1000分子凝血酶生成),而对Ⅱa及其他凝血因子作用较弱,
关于核酸分子杂交的基本介绍
杂交的双方是所使用探针和要检测的核酸。该检测对象可以是克隆化的基因组DNA,也可以是细胞总DNA或总RNA。根据使用的方法被检测的核酸可以是提纯的,也可以在细胞内杂交,即细胞原位杂交。探针必须经过标记,以便示踪和检测。使用最普遍的探针标记物是同位素,但由于同位素的安全性,近年来发展了许多非同位素
关于分子克隆化的基本介绍
分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。
关于高分子增稠剂的介绍
(1)无机增稠剂 无机增稠剂是一类吸水膨胀而形成触变性的凝胶矿物。主要有膨润土、凹凸棒土、硅酸铝等,其中膨润土最为常用。现在人们正在研究用无机物和其它物质复合合成增稠剂,如 M Chtourou 等人正在研究用铵盐的有机衍生物和类属蒙脱石的突尼斯黏土合成增稠剂,并且有了很大的进展。 (2)纤
关于涡轮分子泵的性能介绍
1、泵的排气压力与进气压力之比称为压缩比。压缩比除与泵的级数和转速有关外,还与气体种类有关。分子量大的气体有高的压缩比。对氮(或空气)的压缩比为108~109;对氢为102~104;对分子量大的气体如油蒸气则大于1010。 2、泵的极限压力为10-9Pa,工作压力范围为10-1~10-8Pa,
关于MHCII类分子的结构介绍
x线结晶衍射图显示,II类分子的α1和β1功能区共同形成一个与I类分子相似的槽型结构的多肽结合区。α1和β1各有一个螺旋,形成槽的两侧壁,其余部分形成片层,构成槽的底部。Ⅱ类分子的多态性也体现在多肽结合槽的侧壁和底部,所以其空间构型依编码基因的不同而异。类分子的抗原结合特性亦与I类分子一样,特异
关于MHCII类分子的基本介绍
人类的mhc II类分子由hla复合体中的d区基因编码,已经明确的II类分子包括hla-dr、dp和dq抗原。II类分子亦是由非共价连接的两条多肽链组成,分别称为α链和β链;与I类分子不同的是,两条链均由hla基因编码。α链的分子量约34kd,β链约29kd;两条肽链均嵌入细胞膜,伸入胞质之中;
关于抗体分子的水解片段介绍
在一定条件下,Ig分子肽链的某些部分易被蛋白酶水解为不同片段。木瓜蛋白酶(papain)和胃蛋白酶(pepsin)是最常用的两种Ig蛋白水解酶,并可籍此研究Ig的结构和功能,分离和纯化特定的12多肽片段。 (一) 木瓜蛋白酶水解片段 木瓜蛋白酶水解Ig的部位是在铰链区二硫键连接的两条重链的近
什么是细胞黏附受体?
中文名称细胞黏附受体英文名称cell adhesion receptor定 义细胞表面的糖蛋白。介导细胞之间或细胞与基质之间的黏附与相互作用,并能转导信号。在调节基因表达和细胞生长、构成细胞骨架、细胞周期和细胞凋亡中都起重要作用。应用学科生物化学与分子生物学(一级学科),信号转导(二级学科)
血小板黏附率测定
血小板黏附率测定 【正常参考值】 成人:0.21~0.32; 儿童:0.17~0.30. 【临床意义】 1.血小板黏附率增高:见于冠心病、糖尿病、脑血栓形成、高脂血症、多发性硬化症、雷诺症、高血压、静脉血栓形成、肥胖症、痛风症等。 2.血小板黏附率降低:见于白血病、尿毒症、肝硬化、再生障碍
亲水性和亲脂性信号分子功能介绍
根据信号分子的溶解性可分为亲水性和亲脂性两类。亲水性信号分子的主要代表是神经递质、含氮类激素(除甲状腺激素)、局部介质等,它们不能穿过靶细胞膜,只能通过与细胞表面受体结合,再经信号转换机制,在细胞内产生“第二信使”(如cAMP)或激活膜受体的激酶活性(如蛋白激酶),跨膜传递信息,以启动一系列反应而产
关于巨噬细胞的分子机制的介绍
巨噬细胞(Macrophages)能够吞没、破坏受损伤组织,有助于启动康复过程。虽然它们在损伤位点发挥关键作用,但一旦任务完成,就需要尽快撤离,结束炎症反应,为再生过程开路。继续存在的巨噬细胞不利于组织恢复。尽管研究人员对于启动巨噬细胞的分子机制研究的比较透彻,但关于其退出损伤位点的过程还了解甚
关于细胞凋亡的抑制分子的介绍
迄今为止,人类已发现多种凋亡抑制分子,包括P53,CrmA,IAPs,FLIPs以及Bcl-2家族的凋亡抑制分子。 1)P35和CrmA是广谱凋亡抑制剂,体外研究结果表明P35以竞争性结合方式与靶分子形成稳定的具有空间位阻效应的复合体并且抑制Caspases活性,同时P53在位点DMQD!G被
中国科大等PNAS发文:神经细胞极性维持的分子结构机制
2019年12月30日,中国科学技术大学无膜细胞器与细胞动力学教育部重点实验室、微尺度物质科学国家研究中心、生命科学学院教授王朝课题组通过综合性运用生物化学、结构生物学、化学生物学及分子神经细胞生物学等研究手段,揭示了Ndel1/Ankyrin-G复合物在神经轴突起始段调控物质选择性进入轴突,从
CCR:抗体/小分子组合治疗展现对抗神经细胞瘤的新希望
2016年10月15日/生物谷BIOON/--最近来自美国洛杉矶儿童医院萨班研究所的研究人员进行了一项研究,进一步揭示了细胞因子TGFβ1在成神经细胞瘤生长中的作用,并且提示了小分子药物/抗体组合疗法治疗这种癌症的可能性。相关研究结果发表在国际学术期刊Clinical Cancer Resear