神经营养因子受体的相关介绍
已发现神经末梢上有高亲和力和低亲和力两类 NT 受体,高亲和力受体是一类为 140 kD 的结合酪氨酸激酶的受体,包括 trk A 、 trk B 和 trk C 受体三种。 Trk A 受体对 NGF 的亲和力较高; trk B 受体对 BDNF 和 NT-4/5 的亲和力较高;而 Trk C 受体则主要与 NT-3 结合。各种受体均以二聚体的形式存在,受体激动后可促发胞浆内酪氨酸蛋白激酶的磷酸化。低亲和力受体是一种 75 kD 的膜蛋白,称为 p75 NTR 。这种受体的数量远比高亲和力受体多,约为后者的 7 倍。 P75 NTR 与 Trk A 单体形成的二杂合体能增强与 NGF 特异结合的亲和力。但由两个 p75 NTR 聚合而成的同源二聚体与 NT 结合时,则可引起相反的效应,甚至导致细胞凋亡。......阅读全文
神经营养因子受体的相关介绍
已发现神经末梢上有高亲和力和低亲和力两类 NT 受体,高亲和力受体是一类为 140 kD 的结合酪氨酸激酶的受体,包括 trk A 、 trk B 和 trk C 受体三种。 Trk A 受体对 NGF 的亲和力较高; trk B 受体对 BDNF 和 NT-4/5 的亲和力较高;而 Trk C
Biosensis神经营养因子受体研究相关抗体的应用
神经营养因子是诱导神经元存活,发育和功能的蛋白质家族。其成员包括神经生长因子(NGF),脑源性神经营养因子(BDNF),神经营养因子3(NT-3),神经营养因子4(NT-4)等,这些蛋白质是治疗神经损伤等疾病的潜在药物标靶。 它们属于一类生长因子,即分泌的蛋白质,可以发
神经营养因子与受体的相互作用
2008年7月2日,《自然》(Nature)杂志在线发表了中国科学院生物物理所江涛课题组题为“Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex” 的研究论文。该论文报道了神经营养因子3与其受体p75NTR
神经营养因子与受体的相互作用
2008年7月2日,《自然》(Nature)杂志在线发表了中国科学院生物物理所江涛课题组题为“Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex” 的研究论文。该论文报道了神经营养因子3与其受体p75NTR胞外
神经营养因子与受体的相互作用
2008年7月2日,《自然》(Nature)杂志在线发表了中国科学院生物物理所江涛课题组题为“Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex” 的研究论文。该论文报道了神经营养因子3与其受体p75NTR胞外
胶质细胞源性神经营养因子受体的分布
已知对GDNF有效应神经元的脑区均发现有GDNFR的表达,如嗅球、梨状皮质、隔核、斜角带核、终纹床核、杏仁体、黑质致密部、导水管周围灰质、上丘、脚间核、新皮质、扣带回、海马的CA1、CA3区和齿状回,小脑蒲肯野细胞,间脑内、外侧缰核、网状核、未名带和下丘脑,脑干的下丘、三叉神经运动核、舌下神经核
胶质细胞源性神经营养因子受体的分布
已知对GDNF有效应神经元的脑区均发现有GDNFR的表达,如嗅球、梨状皮质、隔核、斜角带核、终纹床核、杏仁体、黑质致密部、导水管周围灰质、上丘、脚间核、新皮质、扣带回、海马的CA1、CA3区和齿状回,小脑蒲肯野细胞,间脑内、外侧缰核、网状核、未名带和下丘脑,脑干的下丘、三叉神经运动核、舌下神经核、面
胶质细胞源性神经营养因子受体的信号转导介绍
由于GFRα是GPI连接的胞外蛋白,缺乏跨膜和胞内结构域,无法单独完成信号传导。神经营养因子与GFRQ特异结合之后,尚需跨膜蛋白即Ret介导、协同作用,共同完成GDNF家族神经营养因子的信号传导。GDNF同源二聚体分子可直接与单亚基或双亚基的GFRα1结合形成复合物与Ret相互作用,导致Ret的
胶质细胞源性神经营养因子受体的结构简介
GDNF受体(GDNF receptor)是多成分复合物,复合受体由两部分组成,一部分是由固定于胞膜外层的GPI(糖基磷脂酰肌醇)键锚定在细胞表面的糖GPI连接蛋白,称为GDNF家族受体α(GDNFRα,GFRα),另一部分为酪氨酸激酶Ret蛋白。Ret为GDNF的功能性受体,是c—ret原癌基
关于神经营养因子的基本介绍
神经营养因子 ( neurotrophin, NT )是一类由神经所支配的组织(如肌肉)和星形胶质细胞产生的且为神经元生长与存活所必需的蛋白质分子。神经营养因子通常在神经末梢以受体介导式入胞的方式进入神经末梢,再经逆向轴浆运输抵达胞体,促进胞体合成有关的蛋白质,从而发挥其支持神经元生长、发育和功
胶质细胞源性神经营养因子受体的信号转导
由于GFRα是GPI连接的胞外蛋白,缺乏跨膜和胞内结构域,无法单独完成信号传导。神经营养因子与GFRQ特异结合之后,尚需跨膜蛋白即Ret介导、协同作用,共同完成GDNF家族神经营养因子的信号传导。GDNF同源二聚体分子可直接与单亚基或双亚基的GFRα1结合形成复合物与Ret相互作用,导致Ret的二聚
小鼠脑衍化神经营养因子受体(BDNF-R)ELISA试剂盒
小鼠脑衍化神经营养因子受体(BDNF R)ELISA试剂盒 (用于血清、血浆、细胞培养上清液和其它生物体液内) 原理 本实验采用双抗体夹心 ABC-ELISA法。用抗小鼠 BDNF R 单抗包被于酶标板上,标准品和样品中的 BDNF R与单抗结合,加入生物素化的抗小鼠BDNF R,形
关于神经营养因子的学术研究介绍
1、神经营养因子是指机体产生的能够促进神经细胞存活、生长、分化的一类蛋白质因子.过去一直认为神经生长因子主要在发育过程中调节神经元存活,而对成年神经元不产生作用。 2、一般将神经营养物质和上述对神经细胞存活具有调节作用的生长因子统称为神经营养因子.2 神经营养因子概述21 神经营养物质的结
脑源性神经营养因子的特点介绍
BDNF不仅有可以和Trk家族这样有着强亲和力的受体(TrkA、TrkB、TrkC)结合还可以和分子量为75 kD的肿瘤坏死因子家族中的成员一神经营养素受体(P75 neurotrophin receptor)作用,发挥相应的生物学效应。P75受体则不是神经营养因子(neuro-trophins,N
脑源性神经营养因子的基本介绍
脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)是1982年Barde等首先在猪脑中发现的一种具有神经营养作用的蛋白质。脑源性神经营养因子及其受体在神经系统广泛表达。一种小分子二聚体蛋白质BDNF结构、分布及信号转导BDNF分子单体是由119个氨
关于神经营养因子的分类和作用介绍
NGF 的发现是研究生长因子和激发寻找其他神经营养因子的里程碑。现已知道, NGF 仅仅是一系列具有促进神经元存活的分泌因子之一。研究最多的一类营养因子是神经营养因子(neurotrophins)。四种主要的神经营养因子已从哺乳动物中分离出来,它们是: NGF 、脑源神经营养因子(brain d
脑源性神经营养因子的特点介绍
BDNF不仅有可以和Trk家族这样有着强亲和力的受体(TrkA、TrkB、TrkC)结合还可以和分子量为75 kD的肿瘤坏死因子家族中的成员一神经营养素受体(P75 neurotrophin receptor)作用,发挥相应的生物学效应。P75受体则不是神经营养因子(neuro-trophins,N
关于神经营养因子的简介
人类发现的第一个神经营养因子——神经生长因子( Nerve Growth Factor, NGF )首先是由意大利神经科学家 Rita Levi-Montalcini 和美国生物化学家 Stanley Cohen 于 1956 年分离成功; Cohen 还意外发现了另一种能促进表皮细胞生长、增殖
神经营养因子的发现过程
1947 年秋, Levi-Montalcini 接受 Viktor Hamburger 教授的邀请前往美国参加他的工作,并重复她自己许多年前在鸡胚上所做的实验,这是 Levi-Montalcini 一生中的重要转折点,后来她在自传中如是写道。 在关键的实验中,她和 Viktor Hamburger
细胞因子受体的结构的相关介绍
根据细胞因子受体cDNA序列以及受体胞膜外区氨基酸序列的同源性和结构性,可将细胞因子受体主要分为四种类型:免疫球蛋白超家族(IGSF)、造血细胞因子受体超家族、神经生长因子受体超家族和趋化因子受体。此外,还有些细胞因子受体的结构尚未完全搞清,如IL-10R、IL-12R等;有的细胞因子受体结构虽
关于脑源性神经营养因子的特点介绍
BDNF不仅有可以和Trk家族这样有着强亲和力的受体(TrkA、TrkB、TrkC)结合还可以和分子量为75 kD的肿瘤坏死因子家族中的成员一神经营养素受体(P75 neurotrophin receptor)作用,发挥相应的生物学效应。P75受体则不是神经营养因子(neuro-trophins
概述神经营养因子的发现过程
1947 年秋, Levi-Montalcini 接受 Viktor Hamburger 教授的邀请前往美国参加他的工作,并重复她自己许多年前在鸡胚上所做的实验,这是 Levi-Montalcini 一生中的重要转折点,后来她在自传中如是写道。 在关键的实验中,她和 Viktor Hamburg
神经营养因子的分类和作用
NGF 的发现是研究生长因子和激发寻找其他神经营养因子的里程碑。现已知道, NGF 仅仅是一系列具有促进神经元存活的分泌因子之一。研究最多的一类营养因子是神经营养因子(neurotrophins)。四种主要的神经营养因子已从哺乳动物中分离出来,它们是: NGF 、脑源神经营养因子(brain der
神经生长因子受体超家族
1.NGFR超家族的成员属于该家族成员,除神经生长因子受体(nervegrowthfactorreceptorNGFR)外,还有TNF-RⅠ(CD120a)、TNF-RⅡ(CD120b)、CD40、CD27、T细胞cDNA-41BB编码产物、大鼠T细胞抗原OX40和人髓样细胞表面活化抗原Fas(CD
与死亡受体信号通路相关因子介绍CYLD
该基因编码一种细胞质蛋白,具有三个细胞骨架相关蛋白-甘氨酸保守(cap-gly)结构域,作为一种去氢酶。该基因突变与圆筒状瘤、多发性家族性毛发上皮瘤和brooke-spiegler综合征有关。交替转录剪接变体,编码不同的亚型,已经被描述出来。[由RefSeq提供,2008年7月]This gene
与死亡受体信号通路相关因子介绍TNF
该基因编码一种多功能促炎细胞因子,属于肿瘤坏死因子(TNF)超家族。这种细胞因子主要由巨噬细胞分泌。它能与受体TNFRSF1A/TNFR1和TNFRSF1B/TNFBR结合并通过其发挥作用。这种细胞因子参与调节广泛的生物学过程,包括细胞增殖、分化、凋亡、脂质代谢和凝血。这种细胞因子与多种疾病有关,包
与死亡受体信号通路相关因子介绍DAXX
该基因编码一种多功能蛋白质,位于细胞核和细胞质的多个位置。它与多种蛋白质相互作用,如凋亡抗原fas、着丝粒蛋白c和转录因子红细胞增多症病毒e26癌基因同源物1。在细胞核中,编码的蛋白质作为一种与sumoylated转录因子结合的有效转录抑制因子发挥作用。它的抑制作用可以通过将这种蛋白质固定在早幼粒细
与--G蛋白偶联受体相关因子介绍GNAQ
GNAQ基因所编码的蛋白属于鸟嘌呤核苷酸结合蛋白(G蛋白)的家族,GNAQ与GNA11形成的复合物为G蛋白α亚基,这两个基因调控细胞分裂,增强MEK(有丝分裂原活化蛋白激酶的激酶)蛋白活性,在80%的葡萄膜黑色素瘤病人中发现GNA11和GNAQ基因的突变,其机制为基因突变导致MEK的异常激活,目前正
与--G蛋白偶联受体相关因子介绍SNCAIP
该基因编码一种含有多个蛋白质相互作用域的蛋白质,包括锚蛋白样重复序列、卷曲螺旋结构域和atp/gtp结合基序。编码蛋白与神经元组织中的α-突触核蛋白相互作用,可能在胞浆内含物的形成和神经变性中起作用。这个基因的突变与帕金森氏症有关。选择性剪接导致多个转录变体。[由RefSeq提供,2015年4月]T
与--G蛋白偶联受体相关因子介绍TSHR
该基因编码的蛋白是一种膜蛋白,是甲状腺细胞代谢的主要调控因子。编码蛋白是甲状腺素和甲状腺素的受体,其活性由腺苷酸环化酶介导。这个基因的缺陷是几种甲状腺机能亢进症的原因。已经发现了三个编码不同亚型的转录变体。[由RefSeq提供,2008年12月]The protein encoded by this