遗传修饰生物体的定义

中文名称遗传修饰生物体英文名称genetically modified organism;GMO定 义通过分子生物学技术对生物体的基因组进行遗传修饰,所得到的基因组成和性状改变了的生物体。应用学科生态学(一级学科),分子生态学(二级学科)......阅读全文

遗传修饰生物体的定义

中文名称遗传修饰生物体英文名称genetically modified organism;GMO定  义通过分子生物学技术对生物体的基因组进行遗传修饰,所得到的基因组成和性状改变了的生物体。应用学科生态学(一级学科),分子生态学(二级学科)

分子生态学词汇遗传修饰生物体

中文名称:遗传修饰生物体英文名称:genetically modified organism;GMO定  义:通过分子生物学技术对生物体的基因组进行遗传修饰,所得到的基因组成和性状改变了的生物体。应用学科:生态学(一级学科),分子生态学(二级学科)

修饰系统的定义

中文名称修饰系统英文名称modification system定  义参与修饰作用的组成与机制。应用学科生物化学与分子生物学(一级学科),总论(二级学科)

生物体的繁殖与遗传介绍

生物体有别于非生物的另一突出特点是具有繁殖能力及遗传特性。一切生物体都能自身复制;复制品与原样几无差别,且能代代相传,这就是生物体的遗传特性。遗传的特点是忠实性和稳定性,三十多年前,对遗传的了解,还不够深入。基因还只是一个神秘莫测的术语。随着生物化学的发展,已经证实,基因只不过是DNA分子中核苷酸碱

表观遗传学修饰

组蛋白修饰 表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因

遗传饰变生物体(GMOs)的安全隐患

1.GMOs释放对生态环境造成的潜在影响转基因技术打破了“物种”的界限,打乱了生物界的自然进化历程,越来越多的GMOs对现有的生态系统结构、生物多样性、地球环境等存在潜在的威胁。(1)环境入侵GMOs一经产生就具有新的性状,如果作为人造的“外来”品种进入自然生态系统,往往因其具有更强的适合度和竞争而

遗传修饰(转基因)风险评估(二)

3. 慎重向环境释放未经事先批准的转基因植物是不能够释放到环境中去的。在欧洲,2001/18 号欧盟指令( 见注 7 ) 专门规定了慎重向环境中释放转基因植物。该指令涵盖了两种类型的环境释放: 实验释放 ( B 部分)和投放市场的商业释放( C 部分)( 见注 8) 。对于每个授权的 B 释

遗传修饰(转基因)风险评估(一)

1. 引言通常看来,首次撰写转基因风险评估(GMRA) 报告是一项艰巨的任务。你去哪里寻求帮助呢?你懂得相关的术语吗?你了解作物的生物学特性和其与野生亲缘种的亲和性吗?幸运的是,手头上已经有许多可用的资源,如果你知道去哪里查找,就会发现大量繁重的工作已经完成。本章提供了关于如何编写您自己的

限制修饰系统的定义和功能

大多数限制性内切酶常常伴随有1~2种修饰酶(DNA甲基化酶),后者能保护细胞自身的DNA不被限制性内切酶破坏。修饰酶识别的位点与相应的限制性内切酶相同,它们的作用是甲基化每条链中的一个碱基,而不是切开DNA链。甲基化所形成的甲基基团能伸入到限制性内切酶识别位点的双螺旋大沟中,阻碍限制性内切酶发挥作用

JCB:“流放”DNA的表观遗传学修饰

  皮肤细胞在发挥作用时启动的基因与肝细胞完全不同,而其他基因需要保持关闭。将基因“流放”到细胞核边缘,是能够一举关闭大量基因的重要途径。Johns Hopkins大学的一项新研究揭示了DNA被发配到细胞核边疆的具体机制,这一过程对于控制基因表达和决定细胞命运至关重要。相关论文发表在近期的Journ

遗传工程抗体的定义

中文名称遗传工程抗体英文名称genetic engineering antibody定  义应用DNA重组和蛋白质工程技术,在基因水平对免疫球蛋白分子进行切割、剪接、修饰或利用人工合成免疫球蛋白分子片段,进行重新组装后在转染细胞中表达产生的新型抗体。应用学科细胞生物学(一级学科),细胞培养与细胞工程

关于遗传标记的定义

  遗传标记Genetic Marker指可追踪染色体、染色体某一节段、某个基因座在家系中传递的任何一种遗传特性。它具有两个基本特征,即可遗传性和可识别性,因此生物的任何有差异表型的基因突变型均可作为遗传标记。  遗传标记包括形态学标记(morphological marker)、细胞学标记(cyt

遗传多样性的定义

广义的遗传多样性是指地球上所有生物携带的遗传信息的总和。遗传多样性通过物种演化过程中遗传物质突变并累积而形成。物种具有的遗传变异越丰富,它对生存环境的适应能力也就越强,进化潜力也越大。而生态系统的多样性是基于物种的多样性,也就离不开不同物种所具有的遗传多样性。可以说,遗传多样性既是生物多样性的重要组

饮食改变衰老过程的表观遗传学修饰

  表观遗传学修饰可以不改变基因编码,而影响基因的开启或关闭。研究人员对185位志愿者(84位男性和101位女性)的直肠组织切片进行了研究,发现人体内基因的表观遗传学修饰主要受衰老的驱动,不过日常饮食也会对表观遗传学修饰产生重要影响。该研究发表在十二月六日的Aging Cell杂志上。   研

NSMB:表观遗传修饰家族又添新成员

  最近,来自剑桥大学的研究人员发现了一种新的表观遗传学修饰,进一步壮大了表观遗传修饰的"队伍"。这项发表在国际学术期刊Nature Structural and Molecular Biology上的最新研究表明在人类,小鼠以及其他脊椎动物中存在的DNA修饰种类可能比我们想象的更多。  表观遗传学

Cell:表观遗传新关注点—mRNA修饰

  表观遗传学研究关键点是修饰DNA及其蛋白质支架的化学标记,越来越多的研究表明这些化学标记能告诉细胞,哪些基因是表达,哪些是沉默的,因而也决定了个体的表型性状。  mRNA即信使RNA,在中心法则中扮演了重要角色,但此前一些科学家们认为这种RNA只是完成传递的作用,把细胞核中编码的信息传递给蛋白翻

表观遗传信息的定义

中文名称表观遗传信息英文名称epigenetic information定  义细胞或者多细胞生物中与DNA序列本身无关的,但可以传递给子代细胞的信息。这是在发育过程中获得的信息,能影响基因表达,也能对表型产生影响。如DNA甲基化、染色质结构改变和环境因子(如氧化剂和毒剂等)对DNA的修饰等。应用学

多重PCR在遗传病诊断方面的应用遗传修饰生物中的应用

在遗传修饰生物( genetically modified organisms,GMO)中的应用近年来可见应用多重PCR技术在转基因成分定性和定量检测的报道。陈文炳等用多重PCR方法在反应体系中加入13对引物同时检测转基因矮牵牛与阳性对照质粒中的1~3个外源基因,包括花榔菜花叶病毒(  caulif

干细胞研究突破:不经遗传修饰实现重编程

  诱导性多潜能干细胞是被国际生命科学界誉为具有里程碑意义的创新之举,需要通过特定基因的表达将体细胞重编程逆转为干细胞。然而Stem Cell上3月16日刊登的一篇文章报道了来自美国Buffalo大学的研究小组证明成人的皮肤细胞可以转化为不带遗传修饰的神经嵴细胞(干细胞的一种类型),这些干细胞可以产

遗传多态性的定义和特点

遗传多态性(genetic polymorphism)又称遗传多样性(genetic diversity),泛指地球上生物所携带的各种遗传信息的总和,包含种内或种间表现在分子、细胞、个体和群体四个水平的遗传变异程度。遗传多态性特指种内不同群体间、群体内不同个体间的多态现象,是特定物种保持其进化潜能的

研究实现在生物体内“剪贴”基因治疗遗传病

  美国研究人员26日在英国《自然》杂志上报告说,他们在实验鼠体内实现了通过“剪切”和“粘贴”基因来治疗血友病。这一技术有望用于治疗其他遗传病。   英国《自然》杂志网站刊登报告说,美国费城儿童医院等机构的研究人员用这种方法有效治疗了患有血友病的实验鼠。血友病是由基因变异引起的一种遗传病,患者血液

DNA甲基化——表现遗传学中DNA的修饰

DNA甲基化是哺乳动物DNA最常见的复制后调节方式之一,是正常发育、分化所必需的,具有重要的生物学意义。在DNA甲基转移酶 (DNAmethyltransferase,DNMT)的作用下,以S—腺苷甲硫氨酸(SAM)为甲基供体,可以将甲基基团转移到基因组DNA胞嘧啶第 5位碳原子(C5)

用质谱可检测生物体糖蛋白末端唾液酸氧乙酰化修饰

  近日,江汉大学研究生吴兆冠的论文《基于基质辅助激光解析电离质谱结合全甲基化和甲胺化衍生测定唾液酸化聚糖的氧乙酰化》(Characterization of O-acetylation in Sialoglycans by MALDI-MS Using a Combination of Methy

北京大学Nature子刊解析表观遗传修饰

  来自北京大学的研究人员报道称,他们采用化学下拉(pulldown)方法揭示出了哺乳动物转录组的动态假尿嘧啶化 (pseudouridylation)。这一重要的研究成果发布在6月15日的《自然化学生物学》(Nature Chemical Biology)杂志上。  领导这一研究的是北京大学生命科

表观遗传之组蛋白修饰—组蛋白乙酰化

大家好,我又来啦~~今天给大家放送的是表观遗传之组蛋白修饰相关的内容噢,组蛋白修饰也是一个比较复杂的过程,今天呢,我们就给大家讲讲组蛋白乙酰化及相关的产品。 一 组蛋白修饰 真核生物染色质的基本结构单位是核小体,它由约 146 bp DNA 缠绕组蛋白八聚体组成,其中组蛋白八聚体包含 2 (H2

遗传学术语复制的定义和来源

复制(duplication)是在分子进化过程中产生新的遗传物质的主要机制。它可以定义为遗传物质的任何复制行为。复制的常见来源包括异位重组、逆转录、异倍性、多倍性和滑链错配等。

化学所在RNA表观遗传修饰的化学调控研究方面取得进展

  RNA的表观遗传修饰是RNA调节基因表达的化学基础,利用新反应技术和新分子工具对RNA修饰进行精准调控对揭示RNA介导的遗传信息表达网络具有重要意义。然而由于RNA本身的不稳定性,使得在活细胞水平进行化学调控变得异常艰难。N6-甲基腺嘌呤(m6A)是真核生物最常见和最丰富的一种修饰,占甲基化修饰

骨髓增生异常综合征表观遗传学修饰治疗

  5-阿扎胞苷(Azacitidine,AZA)和5-阿扎-2-脱氧胞苷(Decitabine,地西他滨)可降低细胞内DNA总体甲基化程度,并引发基因表达改变。两种药物低剂量时有去甲基化作用,高剂量时有细胞毒作用。阿扎胞苷和地西他滨在MDS治疗中的具体剂量方案仍在优化中。高危MDS患者,是应用去甲

骨髓增生异常综合症的表观遗传学修饰治疗

  5-阿扎胞苷(Azacitidine,AZA)和5-阿扎-2-脱氧胞苷(Decitabine,地西他滨)可降低细胞内DNA总体甲基化程度,并引发基因表达改变。两种药物低剂量时有去甲基化作用,高剂量时有细胞毒作用。阿扎胞苷和地西他滨在MDS治疗中的具体剂量方案仍在优化中。高危MDS患者,是应用去

表观遗传学修饰对轴突再生调控作用的研究进展

  轴突是神经冲动传递过程中结构与功能的基本单位。无论在中枢抑或是周围神经系统损伤后,诱导有效的轴突再生过程是改善神经功能的基础。现已证实,脊髓损伤后轴突能否再生不仅取决于其固有的生长能力,还取决于轴突所处的环境。神经系统损伤后,神经细胞对轴突再生相关基因的表达动员能力及细胞骨架原料的形成能力是决定