端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒的一部分基因约50~200个核苷酸,会因多次细胞分裂而不能达到完全复制(丢失),以至细胞终止其功能不再分裂。因此,严重缩短的端粒是细胞老化的信号。在某些需要无限复制循环的细胞中,端粒的长度在每次细胞分裂后,被能合成端粒的特殊性DNA聚合酶-端粒酶所保留。端粒DNA是由简单的DNA高度重复序列组成,端粒酶可用于给端粒DNA加尾,DNA分子每次分裂复制,端粒就缩短一点(如冈崎片段),一旦端粒消耗殆尽,细胞并不会立即死亡,但如果细胞继续分裂将会损伤正常的DNA片段,当损伤积累到一定程度后,细胞将死亡。......阅读全文

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

端粒的结构解析

  端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。  

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

端粒的结构解析

端粒是短的多重复的非转录序列(TTAGGG)及一些结合蛋白组成特殊结构,除了提供非转录DNA的缓冲物外,它还能保护染色体末端免于融合和退化,在染色体定位、复制、保护和控制细胞生长及寿命方面具有重要作用,并与细胞凋亡、细胞转化和永生化密切相关。当细胞分裂一次,每条染色体的端粒就会逐次变短一些。构成端粒

什么是端粒?端粒的结构特征

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。端粒的长度反映细胞复制史及复制潜能,被称作细胞寿命

Nature:端粒酶结构解析工作最新研究进展

  端粒酶(Telomerase)主要负责合成能够保护染色体末端完整性的DNA片段。最近发现的端粒酶复合体的组装机制有望帮助我们更好地认识其结构以及相关的功能。  早期有关DNA复制机制的研究发现了一个惊人的现象,即细胞在每一轮分裂的时候都会让染色体DNA的末端缩短一点点,如果放任不管,那么终究有一

端粒的结构组成

端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。端粒DNA主要功能有:第一,保护染色体不被核酸酶降解;第二,防止染色体相互融合;

端粒的结构和作用

端粒(Telomere)是真核细胞染色体末端的特殊结构。人端粒是由6个碱基重复序列(TTAGGG)和结合蛋白组成。端粒有重要的生物学功能,可稳定染色体的功能,防止染色体DNA降解、末端融合,保护染色体结构基因DNA,调节正常细胞生长。

端粒酶的结构和功能特点

端粒酶(Telomerase),在细胞中负责端粒的延长的一种酶,是基本的核蛋白逆转录酶,可将端粒DNA加至真核细胞染色体末端,把DNA复制损失的端粒填补起来,使端粒修复延长,可以让端粒不会因细胞分裂而有所损耗,使得细胞分裂的次数增加。端粒在不同物种细胞中对于保持染色体稳定性和细胞活性有重要作用,端粒

关于端粒酶的特殊结构介绍

  端粒是染色体末端的一种特殊结构,它是由许多简单短重复序列和端粒结合蛋白(Telomere end-binding protein, TEBP)组成。在正常人体细胞中,可随着细胞分裂而逐渐缩短。  端粒是细胞必需的遗传组分,因为它能够保护和补偿染色体末端遗传信息的丢失,保护它不会被核酸酶识别而免遭

中科院PLoS-One解析肿瘤细胞端粒保护

  中科院近代物理研究所辐射医学研究室与日本国立放射医学研究中心科研人员开展的合作研究发现,肿瘤细胞染色体末端端粒的保护状态直接影响其对重离子辐射的敏感性。   端粒是细胞染色体末端的高度重复序列,对染色体结构起着重要的维持与保护作用。端粒长度的缩短及其结构的异常变化是细胞衰老以及死亡的一个重要诱

合成端粒酶主要蛋白结构被揭开

  加利福尼亚大学洛杉矶分校的生化学家近日绘制出合成端粒酶(核糖体蛋白酶)的主要蛋白质及RNA(核糖核酸)的结构,从而揭示了这种对于医治癌症与衰老具有十分重要意义的酶的合成机理。研究成果刊登在7月13日出版的《分子细胞》杂志上。   长期以来,由于端粒酶与癌症及衰老有很大关系,所以一直吸引着科学家

南开大学973项目解析端粒特殊序列

  来自南开大学生命科学学院,中国农业大学生命科学学院,美国南佛罗里达大学等处的研究人员围绕一种特殊的端粒序列:染色体末端TTAGGG重复序列(也称为中间端粒序列)展开了研究,发现猪的6号染色体着丝粒区存在植物的 TTTAGGG 端粒重复序列,从而指出猪染色体的ITS区含有植物和动物的保守端

对于酶标仪的​结构解析

  酶标仪即酶联免疫检测仪。是酶联免疫吸附试验的专用仪器又称微孔板检测器。可简单地分为半自动和全自动两大类,但其工作原理基本上都是一致的,其核心都是一个比色计,即用比色法来进行分析。 测定一般要求测试液的最终体积在250μL以下,用一般光电比色计无法完成测试,因此对酶标仪中的光电比色计有特殊要求。

重磅!科学家发现“长寿开关”端粒的新结构

在物理学和微型磁铁的帮助下,研究人员发现了一种端粒DNA的新结构。端粒被视为长寿的关键,它们保护基因免受损害,但每次细胞分裂时都会变短一些。如果它们变得太短,细胞就会死亡。而今的新发现将有助于了解衰老和疾病。研究结果近日发表在《自然》杂志上。 在人体的每个细胞中,都有携带决定人体特征的基因的染色

端粒的概念

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。

端粒酶是如何作用在端粒的?

虽然现在各大牌都在打黑科技牌,都在讲基因,但是真正涉及基因护肤核心的,却少之又少。上次的小黑瓶成分分析里讲到,比菲德这个成分虽好,但还算不上是真正的基因科技,而端粒酶修复素这个成激活分,可以说是护肤品真正踏入基因时代大门的成分。要讲明白这个问题,我们首先需要了解一下护肤跟基因是怎么扯到一起的。这就要

关于DNA复制端粒和端粒酶的内容

  在1941年,美籍印度人麦克林托克(Mc Clintock)就提出端粒(telomere)的假说,指出染色体末端必然存在一种特殊结构——端粒。已知染色体端粒的作用至少有2:a.保护染色体末端免受损伤,使染色体保持稳定;b. 与核纤层相连,使染色体得以定位。  弄清楚DNA复制过程之后,在20世纪

迄今最清晰端粒酶结构图像问世

据英国《自然》杂志25日发表的一篇论文,美国科学家团队使用冷冻电镜技术,以迄今最高的分辨率确定了端粒酶的结构。鉴于端粒酶与癌症和老化关系密切,该发现代表着人类向开发端粒酶相关疗法迈出了重要一步。时至今日,科学家并不能完全肯定衰老和癌症的真正起因,而端粒功能的发现,被认为是开拓了一条抗衰老与癌症新疗法

端粒的研究应用

  端粒长度的维持是细胞持续分裂的前提条件 [1] 。在旺盛分裂或需要保持分裂潜能的细胞,如生殖细胞,干细胞和大多数癌细胞(~85%)中,端粒酶(Telomerase)被激活,它在端粒末端添加端粒序列,保证这些细胞中端粒长度的稳定,维持细胞的持续分裂能力。  细胞中有端粒酶的存在并不能保证端粒的延伸

端粒的功能简介

  稳定染色体末端结构,防止染色体间末端连接,并可补偿滞后链5'末端在消除RNA引物后造成的空缺。  组织培养的细胞证明,端粒在决定动植物细胞的寿命中起着重要作用,经过多代培养的老化细胞端粒变短,染色体也变得不稳定。  细胞分裂次数越多,其端粒磨损越多,细胞寿命越短。

关于端粒的组成

  端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在酵母和人体中,端粒序列分别为C1-3A/TG1-3和TTAGGG/CCCTAA,并有许多蛋白与端粒DNA结合。  端粒DNA主要功能有:  第一,保护染色体不被核酸酶降解;  第二,防止

什么是端粒?

端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。端粒的长度反映细胞复制史及复制潜能,被称作细胞寿命

什么是端粒?

端粒是一段从染色体末端延伸出来的核苷酸序列,细胞每一次分裂,端粒都会缩短,而端粒完全磨损后,就会最终导致细胞功能受损并衰亡。所以端粒也就是细胞的分裂钟,端粒的长短决定了细胞的分裂次数。而端粒酶是一种使端粒延伸的反转录DNA合成酶。简单来说,就是可以在每次细胞分裂后补偿磨损的端粒,从而稳定端粒的长度,

关于端粒的基本介绍

  端粒(英文名:Telomere)是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,端粒短重复序列与端粒结合蛋白一起构成了特殊的“帽子”结构,作用是保持染色体的完整性和控制细胞分裂周期。端粒、着丝粒和复制原点是染色体保持完整和稳定的三大要素。  端粒的长度反映细胞复制史及复制潜能,被称作

端粒DNA-序列的概念

端粒DNA 序列(telomere DNA sequence,TEL)端粒的功能是与端粒酶结合,完成染色体末端复制。端粒酶以其自身的RNA 为模板,在染色体端部添加上端粒的重复序列。作为模板的RNA 比较短,含有1.5 个端粒重复单元。端粒结构还能防止染色体融合及降解。端粒是保护DNA分子中的基因的

研究解析心脏钠通道结构

  近日,美国华盛顿大学等科研机构的科研人员在Cell上发表了题为“Structure of the Cardiac Sodium Channel”的文章,解析了心脏钠通道的结构。  电压门控钠通道Na v1.5产生心脏动作电位并启动心跳。该研究中,科研人员解析了Na v1.5在3.2-3.5?分辨

ICPMS主要结构解析

1.样品引入系统ICP要求所有样品以气体、蒸汽和细雾滴的气溶胶或固体小颗粒的形式进入中心通道气流中。针对于不同样品性状,有多种引入方式。(1)流动注射进样特点:样品用量少,对溶液TDS和粘度要求不高,设备简单灵活;(2)电热蒸发直接进样特点:进样量少,传输率高(>60%),可预先去除溶剂,可预先去除

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来

PNAS:端粒长度检测可筛查短端粒相关的疾病风险

  “美国至少有5000-1000人患与短端粒有关的疾病。这些疾病影响的人数与特定类型的白血病一样多,我们认为患病率可能高于目前的估计。”论文第一作者、约翰霍普金斯Kimmel癌症中心肿瘤学教授Mary Armanios博士表示,“有一些遗传性疾病的特征是端粒极短,比如说肺纤维化或骨髓功能衰竭。”来