为啥波函数是原子轨道
被核势场束缚的电子,与其说是个粒子,不如说它是一种波。人们不得已只好放弃了电子作为一种粒子的图像,代之以电子波的图像。电子其实没有轨道的概念,只有一个大致的空间运动范围,和空间每一点上波(振动)的幅度,这个幅度在空间分布的函数,就是波函数(含时波函数还是时间的函数)。这个幅度目前仍未找到确切的物理意义,即到底是哪个物理量在做振动的幅度。它的“发明”,纯属人类的假设。不过波函数解出来以后,可以很完美地解释电离、激发、化学反应等涉及电子能量变化的过程,因此人们相信这是一种合理的假设,不管波函数到底是什么东西,有用就行。把波函数称为原子轨道(或分子轨道)纯属历史原因,呈现为波的电子根本没有明确轨道。后来波恩提出了波函数的概率解释,即波函数绝对值的平方正比于几率密度,又赋予了电子一定的粒子形象,不过这时的粒子是神出鬼没的,毫无运动规律(不像分子那样,还符合或基本符合牛顿力学和经典电磁学。对束缚态电子而言,牛顿力学,经典电磁学完全失效)可......阅读全文
可见紫外分光光度计与原子吸收分光光度计的差别
对采购者来说,估计最在意的还是这2者的价格不同,哈哈!当然检出限不同:原子吸收普通元素0.01PPM,紫外普通元素100PPM以上言归正传从原理来说:原子吸收观察的是构成物质的元素(原子)中的电子在原子轨道中的跃迁;紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁,属于分子吸收。两者有
原子吸收分光光度法和紫外可见分光光度法有何异同
原子吸收分光光度计与紫外可见分光光度计的区别1、原理:原子吸收观察的是构成物质的元素(原子)中的电子在原子轨道中的跃迁,属于原子吸收。紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁,属于分子吸收。2、能量两者有所同,又有所不同。定量分析的原则同,而测量所需的光能量不同:原子吸收为X射
原子吸收分光光度计与紫外可见分光光度计的区别
1、原理: 原子吸收观察的是构成物质的元素(原子)中的电子在原子轨道中的跃迁,属于原子吸收. 紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁,属于分子吸收. 2、能量: 两者有所同,又有所不同。定量分析的原则同,而测量所需的光能量不同: 原子吸收为
原子吸收分光光度法和紫外可见分光光度法有何异同?
1、原理: 原子吸收观察的是构成物质的元素(原子)中的电子在原子轨道中的跃迁,属于原子吸收。紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁,属于分子吸收。 2、能量 两者有所同,又有所不同。定量分析的原则同,而测量所需的光能量不同:原子吸收为X射线,能量大,可激发电子
什么是共价键?
共价键(covalent bond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈作用叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核
共价键的结构和本质
共价键(covalent bond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈作用叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核
关于共价键的基本信息介绍
共价键(covalent bond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈作用叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原
价键理论的方向性和饱和性介绍
共价键的数目由原子中单电子数决定(包括原有的和激发而生成的. 例如:O有两个单电子,H有一个单电子,所以结合成水分子,只能形成2个共价键;C最多能与H形成4个共价键。原子中单电子数决定了共价键的数目。即为共价键的饱和性。 各原子轨道在空间分布是固定的,为了满足轨道的最大重叠,原子间成共价键时,
紫外光谱技术在食品分析中的应用
紫外光谱技术在食品分析中的应用“民以食为天,食以安为先”,食品安全关乎人们健康和国计民生.由质量问题引起的食品安全事故越来越多,所以急需对农副食品品质进行快速无损检测. 紫外光谱技术在检测食品中一些威胁人们健康的因素方面有着重要作用. 紫外光谱技术是化学分析中常用的一种方法,被广泛用于有机、生化、石
分子轨道理论的类型
在价键理论当中共价键可以分为σ和π键。在分子轨道当中我们如何区别它们呢?在氢分子离子形成过程当中我们看到了由两个1s轨道形成了一个成键的σ1s轨道(形状像橄榄)和另一个反键σ1s*(形状像两个鸡蛋)。凡是分子轨道对称轴形成圆柱形对称的叫做“σ轨道”。在成键δ轨道上的电子称为“成键σ电子”,它们使得分
原子吸收分光光度计与紫外可见分光光度计具体有哪些...
原子吸收分光光度计与紫外可见分光光度计具体有哪些区别?1、原理:原子吸收观察的是构成物质的元素(原子)中的电子在原子轨道中的跃迁,属于原子吸收。紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁,属于分子吸收。2、能量:两者有所同,又有所不同。定量分析的原则同,而测量所需的光能量不同;原
原子吸收分光光度计与紫外可见分光光度计的区别
原子吸收分光光度计与紫外可见分光光度计的区别 1、原理:原子吸收观察的是构成物质的元素(原子)中的电子在原子轨道中的跃迁,属于原子吸收.紫外可见光吸收观察的是构成物质的分子中的电子在分子轨道中的跃迁,属于分子吸收. 2、能量:两者有所同,又有所不同。定量分析的原则同,而测量所需的光能量不同:原子吸收
激光调控外尔准粒子的超快运动
拓扑量子态和拓扑量子材料的理论、实验研究近年来方兴未艾,成为凝聚态物理研究领域的重要前沿。拓扑序作为一种全新的物质分类概念,与对称性一样是凝聚态物理中的基础性概念。对拓扑的深刻理解,关系到凝聚态物理研究中的诸多基本问题,例如量子相的基本电子结构、量子相变以及量子相中的许多无能隙元激发等。在拓扑材
配位化合物的理论依据
配位化合物的化学键理论,主要研究中心原子与配体之间结合力的本性,用以说明配合物的物理及化学性质,如磁性、稳定性、反应性、配位数与几何构型等。配合物的理论起始于静电理论。而后西季威克与鲍林提出配位共价模型,也就是应用配合物中的价键理论,统治了这一领域二十余年,可以较好地解释配位数、几何构型、磁性等一些
充电仅18秒!新型水系锌离子电池正极材料问世
科技日报合肥4月10日电 (记者吴长锋)记者10日从中国科学技术大学获悉,该校国家同步辐射实验室宋礼教授团队,基于插层型锌离子电池正极材料的同步辐射谱学表征,提出了插层剂诱导轨道占据的概念,开发出具有快速充电性能的铵根插层五氧化二钒锌离子电池正极材料。相关成果日前发表于国际学术期刊《美国科学院院刊》
配位化合物的化学键理论
配位化合物的化学键理论,主要研究中心原子与配体之间结合力的本性,用以说明配合物的物理及化学性质,如磁性、稳定性、反应性、配位数与几何构型等。配合物的理论起始于静电理论。而后西季威克与鲍林提出配位共价模型,也就是应用配合物中的价键理论,统治了这一领域二十余年,可以较好地解释配位数、几何构型、磁性等一些
电子顺磁共振的检测对象
可分为两大类:①在分子轨道中出现不配对电子(或称单电子)的物质。如自由基(含有一个单电子的分子)、双基及多基(含有两个及两个以上单电子的分子)、三重态分子(在分子轨道中亦具有两个单电子,但它们相距很近,彼此间有很强的磁的相互作用,与双基不同)等。②在原子轨道中出现单电子的物质,如碱金属的原子、过渡金
电子顺磁共振检测对象
检测对象 ①在分子轨道中出现不配对电子(或称单电子)的物质。如自由基(含有一个单电子的分子)、双基及多基(含有两个及两个以上单电子的分子)、三重态分子(在分子轨道中亦具有两个单电子,但它们相距很近,彼此间有很强的磁的相互作用,与双基不同)等。 ②在原子轨道中出现单电子的物质,如碱金属的原子、
电子自旋共振的检测对象
①在分子轨道中出现不配对电子(或称单电子)的物质。如自由基(含有一个单电子的分子)、双基及多基(含有两个及两个以上单电子的分子)、三重态分子(在分子轨道中亦具有两个单电子,但它们相距很近,彼此间有很强的磁的相互作用,与双基不同)等。②在原子轨道中出现单电子的物质,如碱金属的原子、过渡金属离子(包括铁
简述共价键的形成
A,B 两原子各有一个成单电子,当 A,B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。 形成的共价键越多,则体系能量越低,形成的分子越稳定。因此,各原子中的未成对电子尽可能多地形成共价键。配位键形
解释配位键的理论
解释配位键的理论有三种,即价键理论、晶体场理论和分子轨道理论。价键理论主要是由L.C.鲍林发展起来的。该理论认为配合物是在路易斯碱(配体)和路易斯酸(金属或金属离子)之间反应生成(见酸碱理论),在配体和金属之间有配位键生成(不必全是配位键)。配体上的电子对转到金属的杂化原子轨道上。晶体场理论认为金属
xps分析基本原理
XPS是大家期盼已久的内容,我们希望尽量能够让大家满意。首先给大家分享下我们的更新计划:今天是第一期,主要解决的是XPS的一些最基本的原理以及常规知识;从下一期开始我们主要采用实例的方法进行分享,介绍XPS具体怎么用,如何分峰拟合,XPS还包括哪些高级检测手段等等。XPS看似简单,其实包含的内容
鲍立不兼容原理的基本信息介绍
鲍立不兼容原理一般称作泡利不相容原理,又称泡利原理、不相容原理,是微观粒子运动的基本规律之一。它指出:在费米子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。在原子中完全确定一个电子的状态需要四个量子数,所以泡利不相容原理在原子中就表现为:不能有两个或两个以上的电子具有完全相同的四个
简述共价键的主要特点
1、饱和性 在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。 共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 [9] ,是
共价键的主要特点
饱和性在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。 共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 ,是定比定律(law of
共价键的主要特点
饱和性在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。共价键的饱和性决定了各种原子形成分子时相互结合的数量关系 ,是定比定律(law of d
异核双原子分子的分子轨道能级图
( 1 ) HF F原子 的与H原子的1s轨道能量接近,对称性匹配组成一个成键分子轨道,能量低于F的2p轨道,另一个反键分子轨道,能量高于H的1s轨道。F的1s和2s轨道在形成分子轨道时不参与成键,其能量与原子轨道相同,这样的分子轨道叫做非键轨道。因此在HF分子中共存在三种分子轨道,即成键轨道( )
什么是泡利不相容原理?
泡利不相容原理(Pauli exclusion principle),又称泡利原理、不相容原理,是微观粒子运动的基本规律之一。它指出:在费米子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。在原子中完全确定一个电子的状态需要四个量子数,所以泡利不相容原理在原子中就表现为:不能有两个或两个
异核双原子分子的分子轨道能级图
异核双原子分子的分子轨道能级图( 1 ) HF F原子 的与H原子的1s轨道能量接近,对称性匹配组成一个成键分子轨道,能量低于F的2p轨道,另一个反键分子轨道,能量高于H的1s轨道。F的1s和2s轨道在形成分子轨道时不参与成键,其能量与原子轨道相同,这样的分子轨道叫做非键轨道。因此在HF分子中共存在
关于泡利不相容原理的介绍
泡利不相容原理(Pauli exclusion principle),又称泡利原理、不相容原理,是微观粒子运动的基本规律之一。它指出:在费米子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。在原子中完全确定一个电子的状态需要四个量子数,所以泡利不相容原理在原子中就表现为:不能有两个或