线粒体DNA的基本性质

与核基因组相比,线粒体基因组有如下性质:所有的基因都位于一个单一的环状DNA分子上。遗传物质不为核膜所包被。DNA不为蛋白质所压缩。基因组没有包含那么多非编码区域(调控区域或“内含子”)。一些密码子与通用密码子不同。相反,与一些紫色非硫细菌相似。一些碱基为两个不同基因的一部分(重叠基因):某碱基作为一个基因的末尾,同时作为下一个基因的开始。线粒体DNA比DNA存活时间长得多,而且遗传自母亲,因此用来确认家庭关系十分理想。......阅读全文

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

线粒体DNA标记的优点和问题

线粒体基因是系统发生生物地理学研究中最常用的分子标记。其优点是:1)进化速度快;2)单拷贝,缺少类似于核基因的重组;3)具有可用于不同类群的通用引物;4)线粒体DNA能更有效的揭示单倍型和种群的历史。虽然线粒体DNA标记在研究中有较多的优点,但仍存在一些问题(同样也是核基因标记的优点):1)由于线粒

线粒体DNA的主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而

人类卵子线粒体DNA实现交换

  美国国家灵长类动物研究中心等机构不久前实现了人类卵子之间的线粒体DNA交换,并成功使这些卵子受精,由此得到的受精卵具有3个人的遗传物质。由于当前科学伦理管理的限制,本次的受精卵在完成科学观察后被销毁。   曾有科学家在2010年培育出了交换线粒体DNA且含有3人遗传物质的人类受精卵。不过其方法

线粒体DNA突变与母亲年龄

  一项研究探索了与诸如癌症和糖尿病等疾病有联系的遗传突变的母亲到子女的传播。细胞的代谢动力工厂线粒体拥有自己的从母亲遗传来的基因组,有时候在一个人身上可能含有多个线粒体DNA(mtDNA)类型,这种现象被称为异质性。Kateryna D. Makova及其同事探索了异质性在一个人类人群中的普遍

概述线粒体DNA的主要功能

  1、复制  mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。  2、遗传  由于线粒体会通过卵细胞传递,

癌细胞线粒体DNA漂移的分子机理

  通过对57例结肠癌患者的基因组进行基因分析,研究人员发现患者体细胞核内的平均线粒体DNA数量比健康人高4.42倍。“这表明,迁移到核基因组中的线粒体DNA可能对癌症的发展起重要作用,”本文的共同作者,来自UAB公共卫生学院的生物统计学教授Hemant K. Tiwari博士和UAB医学院遗传学教

线粒体基因组的DNA相关介绍

  与细胞核DNA相比,mtDNA作为生物体种系发生的“分子钟”(molecular clock)有其自身的优点:①突变率高,是核DNA的10倍左右,因此即使是在近期内趋异的物种之间也会很快地积累大量的核苷酸置换,可以进行比较分析;②因为精子的细胞质极少,子代的mtDNA基本上都是来自卵细胞,所以m

基本方案1-线粒体-DNA-的筛查用-Southern-blot-研究基因重排

实验材料骨骼或白细胞的基因组 DNA试剂、试剂盒10 X restriction 缓冲液BamHI 和 EcoRV 限制性内切核酸酶NaCl 溶液乙醇6 X 胶聚蔗糖 oading 缓冲液琼脂糖胶DNA 分子质量标记1 X TBE 缓冲液乙碘氯苯丁酯溶液杂交液2 X SSC(现配)精液 DNA仪器、

细胞化学基础线粒体DNA组成结构

研究人员发明了转换卵细胞基因材料的方法,用拥有健康线粒体的卵细胞取代携带错误线粒体DNA的卵细胞。结果是,胚胎会携带来自母亲和父亲的核DNA,以及卵细胞捐献者的线粒体DNA。mtDNA虽能合成蛋白质,但其种类十分有限。迄今已知,mtDNA编码的RNA和多肽有:线粒体核糖体中2种rRNA(12S及16

线粒体DNA或有助治疗男性不育

  德国研究人员最新发现,增加睾丸中线粒体DNA(脱氧核糖核酸)的分子数量,可能有助治疗男性不育。  被称为“细胞发电厂”的线粒体是独立于细胞核的细胞器,有着自己的遗传物质——线粒体DNA。线粒体DNA突变可导致男性不育。  德国马克斯·普朗克衰老生物学研究所发布新闻公报说,小鼠体内发生突变的线粒体

为什么我们仍保留线粒体DNA?

  线粒体看上去像细菌,这外观并非伪装:它们从前是自由生活的细菌,后来大约在20亿年前适应了寄生在大细胞里的生活。它们还保留了基因组的一个碎片,作为曾经独立存在的印记。由于被我们常见的单细胞祖先消耗,这个“能源动力室”细胞器已经失去了其2000个以上的基因。仍然有少数基因留了下来,这取决于有机体,但

线粒体DNA替代疗法引争议

  科学家认为,线粒体DNA变体与许多普通人体状况有关联,包括神经退行性疾病、癌症和衰老等。  上世纪90年代,法国科学家干扰了一只老鼠的线粒体,并观察其大脑将产生何种变化。线粒体能为大部分复杂细胞提供能量。结果发现,名为H和N的两种老鼠品系的线粒体DNA出现略微不同。  科学家发现,H老鼠能比N老

关于线粒体基质的基本介绍

  线粒体是真核生物具有的用于有氧呼吸的细胞器。  线粒体基质是线粒体中由线粒体内膜包裹的内部空间,其中含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶等众多蛋白质,所以较细胞质基质黏稠。苹果酸脱氢酶是线粒体基质的标志酶。线粒体基质中一般还含有线粒体自身的DNA(即线粒体DNA)、RNA和核

线粒体的基本结构与功能

线粒体由外至内可划分为线粒体外膜(OMM)、线粒体膜间隙、线粒体内膜(IMM)和线粒体基质四个功能区。处于线粒体外侧的膜彼此平行,都是典型的单位膜。其中,线粒体外膜较光滑,起细胞器界膜的作用;线粒体内膜则向内皱褶形成线粒体嵴,负担更多的生化反应。这两层膜将线粒体分出两个区室,位于两层线粒体膜之间的是

关于线粒体DNA的主要功能介绍

  复制  mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。  遗传  由于线粒体会通过卵细胞传递,相关疾病

DNA连接酶的性质

大肠杆菌的DNA连接酶是一条分子量为75Ku的多肽链。对胰蛋白酶敏感,可被其水解。水解后形成的小片段仍具有部份活性,可以催化酶与NAD(而不是ATP)反应形成酶-AMP中间物,但不能继续将AMP转移到DNA上促进磷酸二酯键的形成。DNA连接酶在大肠杆菌细胞中约有300个分子,和DNA聚合酶Ⅰ的分子数

DNA-连接酶的性质

大肠杆菌的DNA连接酶是一条分子量为75Ku的多肽链。对胰蛋白酶敏感,可被其水解。水解后形成的小片段仍具有部份活性,可以催化酶与NAD(而不是ATP)反应形成酶-AMP中间物,但不能继续将AMP转移到DNA上促进磷酸二酯键的形成。DNA连接酶在大肠杆菌细胞中约有300个分子,和DNA聚合酶Ⅰ的分子数

线粒体DNA甲基化研究进展

  DNA 甲基化是表观遗传修饰的重要方式之一. 线粒体是真核细胞内的关键细胞器, 线粒体DNA(mtDNA)编码部分线粒体基因, 其 mtDNA 的甲基化修饰可能引起所编码基因的异常表达, 从而参与调节生理和病理过程. 近期来自西安交通大学生命科学与技术学院的研究人员就目前 mtDNA 甲基化及其

Nature:修复线粒体DNA损伤逆转衰老

  在医疗技术日趋完善的今天,健康不再是人们唯一所追求的,养生、保养等越来越成为人们津津乐道的话题,人人都想要永葆青春,而这其中最大的敌人便是“衰老”。之前《Science》杂志有报道称衰老与线粒体DNA损伤相关,一直以来,科学家们将衰老归因于遗传及基因的损伤,却并未深思过这种损伤是否可逆。而来自阿

推翻教科书!线粒体DNA可通过父系遗传

  对于大多数哺乳动物来说,线粒体和线粒体DNA都是只通过母系遗传。尽管其他生物偶尔会经历父系遗传,但之前关于人类父系遗传线粒体的报道大多是因为污染或样本混淆。  然而,美国辛辛那提儿童医院的黄涛生博士和梅奥诊所的Paldeep Atwal博士本周在《美国科学院院刊》(PNAS)上发表论文,称他们在

新研究实现人类卵子线粒体DNA交换

研究人员不久前实现了人类卵子之间的线粒体DNA交换,并成功使这些卵子受精,由此得到的受精卵具有3个人的遗传物质。 线粒体是细胞中提供能量的细胞器,它所包含的遗传物质――线粒体DNA只通过母系遗传,即动物体内的线粒体DNA只来源于卵细胞,与精子无关。因此,母系线粒体异常会导致许多遗传病,研究人员认为

关于线粒体肌病的基本介绍

  线粒体脑肌病(ME)是一组少见的线粒体结构和(或)功能异常所导致的以脑和肌肉受累为主的多系统疾病。其肌肉损害主要表现为骨骼肌极度不能耐受疲劳,神经系统主要表现有眼外肌麻痹、卒中、癫痫反复发作、肌阵挛、偏头痛、共济失调、智能障碍以及视神经病变等,其他系统表现可有心脏传导阻滞、心肌病、糖尿病、肾功能

线粒体ATP酶的基本信息

中文名称线粒体ATP酶英文名称mitochondrial ATPase定  义编号:EC 3.6.3.14。定位于线粒体膜上的催化ATP水解的酶,通过水解ATP为细胞提供主要能源。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

线粒体ATP酶的基本信息

中文名称线粒体ATP酶英文名称mitochondrial ATPase定  义编号:EC 3.6.3.14。定位于线粒体膜上的催化ATP水解的酶,通过水解ATP为细胞提供主要能源。应用学科生物化学与分子生物学(一级学科),酶(二级学科)

关于抗线粒体抗体的基本介绍

  抗线粒体抗体(AMA)由Maokey等于1958年首次于原发性胆汁性肝硬化(primary biliary cirrhosis,PBC)患者血清发现,是一种无器官特异性也无种属特异性的自身抗体,以后的研究发现,AMA也见于其他自身免疫病患者。AMA的靶抗原是线粒体膜上的多种蛋白,成分复杂,现知有

测量线粒体DNA损伤可预测帕金森病

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507811.shtm 一项线粒体DNA损伤血液测试可以帮助诊断帕金森病。图片来源:KATERYNA KON/SCIENCE SOURCE帕金森病是一种脑部疾病,它会逐渐导致行动困难、震颤,最终痴呆

《自然》:利用DNA交换避免线粒体遗传疾病

  (图片来源:Oregon National Primate Research)   据《自然》网站报道,线粒体DNA只会由母亲传给后代,因为精子中的线粒体并不向胚胎贡献DNA。线粒体DNA突变与许多疾病存在关联,比如Ⅱ型糖尿病、线粒体肌病以及Leigh综合症(常见于婴儿的神经退化性疾病

细胞化学基础线粒体DNA主要功能

复制mtDNA可自我复制,其复制也是以半保留方式进行的。用同位素标记证明,mtDNA复制的时间主要在细胞周期的S期和G2期。DNA先复制,随后线粒体分裂。其复制仍受细胞核的控制,复制所需要的DNA聚合酶是由核DNA编码,在细胞质核糖体上合成的。遗传由于线粒体会通过卵细胞传递,相关疾病会遗传自母亲。而