线粒体DNA甲基化研究进展

DNA 甲基化是表观遗传修饰的重要方式之一. 线粒体是真核细胞内的关键细胞器, 线粒体DNA(mtDNA)编码部分线粒体基因, 其 mtDNA 的甲基化修饰可能引起所编码基因的异常表达, 从而参与调节生理和病理过程. 近期来自西安交通大学生命科学与技术学院的研究人员就目前 mtDNA 甲基化及其在疾病中的研究进展进行总结. DNA 甲基化是调节基因表达的重要方式之一,是指生物体在 DNA 甲基转移酶(DNA methyltransferase, DNMT) 的 催 化 下 , 以 S -腺 苷 甲 硫 氨 酸(S-adenosylmethionine, SAM)为甲基供体, 将甲基转移到特定碱基的过程. 线粒体通过生物氧化为细胞提供能量, 也是真核细胞内自由基生成及调控细胞凋亡的关键细胞器.大量实验证据提示, 线粒体的结构与功能改变、动态变化等与神经退行性病变及代谢型疾病等关系非常密切. 线粒体是一种具有半自主性的细胞器......阅读全文

DNA甲基化——表现遗传学中DNA的修饰

DNA甲基化是哺乳动物DNA最常见的复制后调节方式之一,是正常发育、分化所必需的,具有重要的生物学意义。在DNA甲基转移酶 (DNAmethyltransferase,DNMT)的作用下,以S—腺苷甲硫氨酸(SAM)为甲基供体,可以将甲基基团转移到基因组DNA胞嘧啶第 5位碳原子(C5)

表观遗传之DNA甲基化(一)

俗话说,龙生龙,凤生凤,老鼠的儿子会打洞。 这句话什么意思呢?想必很多人有不同的看法~~ 从传统的社会认知角度看,就是“出生决定论”,一个人的出生是什么样的,以后就会有什么样的作为和成就,家庭决定着个人的前途和发展方向。龙凤阶层的人自出生以来便是龙凤,若是草根阶层,也很难上升到龙凤圈层,即使有这样的

表观遗传之DNA甲基化(二)

二 DNA甲基化 DNA甲基化:DNA甲基化是通过DNA甲基转移酶在胞嘧啶环的第5个碳原子上共价加成甲基而产生的,从而产生5-甲基胞嘧啶(5-mC),在体细胞中,几乎仅在二核苷酸CpG的对称甲基化配对中发现了5-mC,而在胚胎干(ES)细胞中,在非CpG中也观察到了大量的5-mC。5-mC作为表型和

组蛋白修饰与DNA甲基化之间的关系

在引起基因沉默的过程中,沉默信号(DNA甲基化、组蛋白修饰、染色质重新装配)是如何进行的?谁先谁后?这是一个“鸡和蛋”的问题,目前仍处于研究阶段,还没有定论。研究发现DNA甲基化和组蛋白乙酰化是一个相互促进、加强的过程,如许多HDAC可以和DNMTl、3a、3b相互作用;而甲基化CpG结合蛋白—

表观遗传学关于DNA甲基化

表观遗传学是研究表观遗传变异的遗传学分支学科从目前的研究来看,X 染色体剂量补偿、DNA 甲基化、组蛋白密码、基因组印记、表观基因组学和人类表观基因组计划等问题都是表观遗传学研究的内容。其中甲基化是基因组DNA 的一种主要表观遗传修饰形式,是调节基因组功能的重要手段。在脊椎动物中,CpG二核

JCB:“流放”DNA的表观遗传学修饰

  皮肤细胞在发挥作用时启动的基因与肝细胞完全不同,而其他基因需要保持关闭。将基因“流放”到细胞核边缘,是能够一举关闭大量基因的重要途径。Johns Hopkins大学的一项新研究揭示了DNA被发配到细胞核边疆的具体机制,这一过程对于控制基因表达和决定细胞命运至关重要。相关论文发表在近期的Journ

亚硫酸氢盐修饰后测序法检测甲基化——DNA甲基化

亚硫酸氢盐修饰后测序法主要可用来检测甲基化。基化实验方法原理重亚硫酸盐使DNA中未发生甲基化的胞嘧啶脱氨基转变成尿嘧啶,而甲基化的胞嘧啶保持不变,用PCR扩增(引物设计时尽量避免有CpG,以免受甲基化因素的影响)所需片段,则尿嘧啶全部转化成胸腺嘧啶。最后对PCR产物进行测序,并且与未经处理的序列比较

研究发现DNA甲基化修饰精准调控植物生物钟周期

  生物钟通过协调细胞内代谢和生理活动的节律性以适应由地球自转而产生的昼夜光温周期性变化,为植物生长发育提供适应性优势。在多种真核生物中均已发现组蛋白修饰可参与调控生物钟周期,但DNA甲基化作为表观修饰的另一重要类型,是否参与以及如何调控真核生物的生物钟尚不清楚。  中国科学院植物研究所研究员王雷研

DNA修饰的概念

中文名称DNA修饰英文名称DNA modification定  义DNA合成后,通过一系列化学加工使其结构发生某些改变。如DNA的甲基化等。应用学科遗传学(一级学科),分子遗传学(二级学科)

表观遗传学修饰

组蛋白修饰 表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因

DNA甲基化参与调控大豆等表观遗传研究新进展

  大豆胞囊线虫(Soybean cyst nematode, SCN; Heteroderaglycines)病是引起大豆减产的病害之一,研究大豆-线虫互作机制对提出新的病害防控策略、培育抗胞囊线虫病的大豆新品种具有重要意义。DNA甲基化(DNA methlation)是一种表观遗传标记,在植物生

DNA甲基化分析

The influence of methylation on the promoter activity and gene expression and the involvement of DNA methylation in carcinogenesis caused an extensive

DNA甲基化预测

实验概要本实验分别对DNA片段、基因、启动子和外显子进行了甲基化的计算预测,并且随机选择了1000甲基化的和1000未甲基化的个体进行预测。用于甲基化预测的特征有:GC相关特征、四联体频率、转录因子结合位点(TFBSs)。所有预测方法均采用Weka提供的软件进行。实验步骤1. DNA甲基化数据本研究

细胞化学词汇DNA修饰

中文名称:DNA修饰英文名称:DNA modification定  义:DNA合成后,通过一系列化学加工使其结构发生某些改变。如DNA的甲基化等。应用学科:遗传学(一级学科),分子遗传学(二级学科)

揭示全基因组DNA甲基化、半甲基化与遗传突变的新方法

  5月31日,中国科学院北京生命科学研究院研究员孙中生团队与北京大学肿瘤医院合作,在Briefings in Bioinformatics上,发表了题为A new approach to decode DNA methylome and genomic variants simultaneousl

组蛋白甲基化修饰研究再获突破

  日前,复旦大学徐彦辉课题组在组蛋白甲基化修饰研究领域获得新进展,相关成果发布在《分子细胞》上,该项研究得到了国家自然科学基金面上项目的资助。  组蛋白甲基化修饰是一种非常重要的表观遗传修饰,参与调节异染色质形成、X染色体失活、基因印记及DNA的损伤修复等多种生命过程。关于组蛋白去甲基化酶的研究是

表观遗传修饰的细胞中DNA发生BZ构象转变被揭示

  细胞核中,缠绕在组蛋白上的双链DNA一般以右手螺旋的B-DNA构象存在,但也会存在其它构象。组蛋白的乙酰化修饰是表观遗传学研究的重要内容。当组蛋白发生乙酰化时,DNA 与组蛋白八聚体的紧密缠绕被解开。那么,组蛋白的乙酰化是否影响DNA的构象,甚至导致B-DNA构象向其它构象包括Z-DNA构象转化

什么是DNA甲基化?

DNA甲基化(DNA methylation)为DNA化学修饰的一种形式,能够在不改变DNA序列的前提下,改变遗传表现。所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5号碳位共价键结合一个甲基基团。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性

什么是DNA甲基化?

DNA甲基化(DNA methylation)为DNA化学修饰的一种形式,能够在不改变DNA序列的前提下,改变遗传表现。所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5号碳位共价键结合一个甲基基团。大量研究表明,DNA甲基化能引起染色质结构、DNA构象、DNA稳定性

DNA甲基化技术介绍

DNA 甲基化是表观遗传学(Epigenetics)的重要组成部分,在维持正常细胞功能、遗传印记、胚胎发育以及人类肿瘤发生中起着重要作用,是目前新的研究热点之一。介绍DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DN

DNA甲基化的原理

DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的

dna甲基化与rna甲基化的区别

DNA甲基化和组蛋白修饰的相同点:都有包含甲基化修饰;不同点:修饰对象不同,一个是对DNA修饰,一个是对蛋白:组蛋白修饰。而RNA干扰是对RNA的降解,与前两者差异较大。

遗传发育所揭示DNA甲基化在大豆驯化改良中的变异机制

  作物驯化是农业发展中最重要的事件之一。通过对野生作物的不断驯化改良,人类才得以获得符合生产生活需要的现代作物。驯化改良过程就是对作物群体基因组多样性进行选择的过程。目前对作物驯化改良的研究主要集中在对遗传变异的选择,在DNA水平鉴定到了大量的驯化选择区间。然而,除了遗传变异,表观遗传也在植物的生

遗传修饰生物体的定义

中文名称遗传修饰生物体英文名称genetically modified organism;GMO定  义通过分子生物学技术对生物体的基因组进行遗传修饰,所得到的基因组成和性状改变了的生物体。应用学科生态学(一级学科),分子生态学(二级学科)

遗传修饰(转基因)风险评估(二)

3. 慎重向环境释放未经事先批准的转基因植物是不能够释放到环境中去的。在欧洲,2001/18 号欧盟指令( 见注 7 ) 专门规定了慎重向环境中释放转基因植物。该指令涵盖了两种类型的环境释放: 实验释放 ( B 部分)和投放市场的商业释放( C 部分)( 见注 8) 。对于每个授权的 B 释

遗传修饰(转基因)风险评估(一)

1. 引言通常看来,首次撰写转基因风险评估(GMRA) 报告是一项艰巨的任务。你去哪里寻求帮助呢?你懂得相关的术语吗?你了解作物的生物学特性和其与野生亲缘种的亲和性吗?幸运的是,手头上已经有许多可用的资源,如果你知道去哪里查找,就会发现大量繁重的工作已经完成。本章提供了关于如何编写您自己的

简述DNA甲基化的原理

  DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结

DNA甲基化的基本原理

DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的

DNA甲基化的作用原理

DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的

DNA甲基化的基本原理

DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。广义上的DNA甲基化是指DNA序列上特定的碱基在DNA甲基转移酶(DNA methyltransferase,DNMT)的催化作用下,以S—腺苷甲硫氨酸(S—adenosyl methionine,SAM)作为甲基供体,通过共价键结合的